

INDUSTRIAL HOSE

COUPLINGS, & ACCESSORIES

JASON INDUSTRIAL® an AMMEGA Group company offers a comprehensive portfolio of industrial hose, couplings and accessories along with hydraulic hose, fittings and crimping equipment to distributors throughout the Americas.

With corporate headquarters located in West Caldwell, NJ, Jason Industrial operates distributor centers throughout North, Central and South America.

As a Jason Industrial customer, you can feel confident in the quality and integrity of our products, the speed and efficiency at which they are delivered, and the expertise and customer focus that our local representatives are committed to providing.

Welcome to Jason Industrial... the first name in fluid power rubber and PVC hose products and accessories.

-WE MAKE YOUR BUSINESS MOVE.

Scan the QR Code to view all of our resources at www.JasonIndustrial.com

In compliance with California law and Proposition 65 requirements, products in this publication may be subject to the following statement:

TABLE OF CONTENTS

GENERAL INFORMATION / TECHNICAL REFERENCE

Hose by Series Listing	4
Hose by Application Listing	5
Couplings & Accessories Listing	6
Regulatory Organizations List	8
ARPM Oil Resistance Guide	8
Flexibility and Minimum Bend Radius	8
Hose Selection (S.T.A.M.P.E.D.)	9
Pressure Re-Rating Percentage for Increased Temps	12
Nomographic Chart	13
Common Terms	14
Thread Chart	14
Commonly Used Rubber & Plastic Compounds Chart	15
Proper Grounding of Industrial Hose with Static or Helical Wires	16
Non-Cataloged Hose Request Form	17
Care, Maintenance & Storage of Hose	18
Steam Hose Safety Recommendations	89
Coupling & Accessories	109
Crimping Specifications	114
- Assembly Procedure Recommendations	114
- 1-1/2" I.D Hose - Crimping Specifications	115
- 2" I.D Hose - Crimping Specifications	116
- 2-1/2" I.D Hose - Crimping Specifications	117
- 3" I.D Hose - Crimping Specifications	118
- 4" I.D Hose - Crimping Specifications	119
- 6" I.D Hose - Crimping Specifications	120
- At-A-Glance Ferrule/Sleeve Selection	121
Cam & Groove Coupling Specifications	122
Chemical Resistance Tables	155
- Rubber Hose - Chemical, Oil & Solvent Resistance	156
- PVC, TPR, TPE & Polyurethane	168
- Coupling Material Corrosion Resistance	181
Decimal, Millimeter, Fraction Equivalents	187
Technical Information	
- Vacuum Conversion Table for Water (Suction)	187
- Temperature Conversion Chart	188
- Conversion Factors	189
- Pressure Rating Conversion Chart - PSI to Bar - Bar to PSI	192
Terms and Conditions	195

WWW.JASONINDUSTRIAL.COM

T SERIES Series Page | HOSE BY PRODUCT SERIES

HOSE BY PRODUCT SERIES	Series	Page
Polyurethane FDA USDA Material Hose $S\Omega$	3000	39
HD PVC USDA 3-A Liquid Food Suction Hose	3010	40
PVC FDA 3-A Liquid Suction Hose	3012	41
HD Polyurethane Lined, PVC Mat. Handling	3020	47
Polyurethane Material Handling and Duct Hose	3021	48
Med. PU Lined Material Handling Hose	3022	49
PVC Mulch Resurfacing Hose	3030	50
Abrasion Resistant SBR Material Handling Hose	3035	51
PU Drop Suction/Delivery Gasoline & alt fuels $S\Omega$	3040	67
PU Drop Suction/Delivery Gasoline & alt fuels $S\Omega$	3045	68
PU Gasoline and Alt Fuel Vapor Recovery Hose - $\ensuremath{S}\Omega$	3050	69
HD PU Gasoline & Alt Fuel Vapor Recovery - S Ω	3053	70
NBR/PVC Drop Suction/Delivery Gasoline - S Ω	3058	71
HD Sub-Zero Cold Weather Clear PVC Suction	3074	91
Heavy Duty PVC Suction & Transfer Hose	3076	92
NBR/PVC Suction Hose	3080	93
Oilfield Clean-Up & Spill Recovery Hose	3085	72
Safety Oilfield Clean-Up and Recovery Hose - $\ensuremath{S}\Omega$	3087	73
Red PVC Air Hose - Medium Oil Resistant	4103	21
Multi-Purpose TPR Hose - Red	4105	22
Jackhammer Hose Assembly - Yellow	4121	23
Jackhammer Hose Assembly - Red	4122	23
EPDM/SBR Rubber Air/Water Hose - Black	4125	24
EPDM/SBR Rubber Air/Water Hose - Red	4129	24
Bulk Pneumatic Deadman Twinline Hose	4142	25
MSHA Mine Spray Hose	4182	64
Washdown Service /MSHA Mine Spray	4183	65
General Service EPDM Air/Water - Red	4300	26
General Service EPDM Air/Water - Black	4301	27
Textile Reinforced Air Hose - 400 PSI	4302	28
Textile Reinforced Air Hose - 300 PSI	4305	29
MP300 Multi-Purpose NBR Non-Conductive	4306	30
Atlas - MP500 Non-Conductive MSHA - Yellow	4308	31
Gunite Hose	4310	52
2-Ply Sandblast Hose	4312	53
Lightweight Sandblast Hose	4313	54
4-Ply Sandblast Hose	4314	55
1/8" Tube Sand & Dry Cement, Powder Disc.	4322	56
3/16" Tube Sand & Dry Cement, Powder Disc.	4323	56
1/4" Tube Sand & Dry Cement, Powder Disc.	4324	56
Rubber 2-Ply Water Discharge Hose	4352	94
Rubber 4-Ply Water Discharge Hose	4354	95
Nitrile/PVC Oil Resistant Discharge Hose - Yellow	4358	96

		3 -	
Nitrile/PVC Oil Resistant Discharge Hose - Black	4359	97	
Concrete Placement Hose - 800 PSI	4370	57	
Textile Concrete Placement Hose	4373	58	
Concrete Placement Hose - 1300 PSI	4375	59	
Thermally Non-Conductive Furnace Door Hose	4380	98	
Blue Low Temp Petroleum Suction - Corrugated	4410	74	
Nitrile Petroleum Suction Hose - 300 PSI	4414	75	
Nitrile Petroleum Suction Hose - 150 PSI	4420	76	
Tank Truck Hose - Red Corrrugated	4421	77	
Nitrile Petroleum Suction Hose - 400 PSI	4424	78	
Hot Air Blower Hose	4425	60	
Dreamflex™ Petroleum Transfer & Suction	4426	79	
Plaster and Grout Hose	4428	61	
Hot Tar & Asphalt Suction Hose - 150 PSI	4429	80	
Cross-Linked Polyethylene Suction Hose	4430	36	
UHMWPE Chemical Suction Hose	4433	37	
Oilfield Petro Waste Suction Hose	4436	81	
Rubber Water Suction Hose	4450	99	
FDA Bulk Food Suction Hose	4460	42	
FDA Liquid Food Suction Hose	4465	43	
Bulk Material Suction Hose	4470	62	
Blue PVC Water Discharge Bulk Hose & Assy.	4502	100	
Red PVC Water Discharge & Assy Med.Duty	4504	101	
FDA Braided PVC Hose	4511	44	
Red PVC Water Discharge Hose - Heavy Duty	4515	102	
FDA Spring Wire PVC Hose	4600	45	
Green PVC Water Suction Hose	4601	103	
Clear/White Helix PVC Water Suction Hose	4615	104	
HD Double Jacket Mill Discharge Hose & Assy.	4703	105	
Municipal Grade SJ Mill Discharge Hose & Assy.	4705	106	
MSHA Fire Hose Assemblies	4735	107	
Wire Reinforced Air Hose	4805	32	
Wire Braid Reinforced Air Hose	4806	33	
Hi-Temp Air Hose - Wire Reinforced	4807	34	
EPDM Steam Hose	4815	87	
EPDM Red Steam Hose	4816	88	
Red Diamond Oilfield Special 5K Hose	5201	82	

Series Page

5205

5210

5823

4J30

83

84

108

85

Red Diamond Rig Hose - 4SH

Red Diamond Hot Oiler Hose

SAE30-R11 Fuel Line

Mainstream[™] Pressure Washer Assemblies

HOSES BY APPLICATION

AIR/MULTIPURPOSE HOSE	Series	Page
Red PVC Air Hose - Medium Oil Resistant	4103	21
Multi-Purpose TPR Hose - Red	4105	22
Jackhammer Hose Assembly - Yellow	4121	23
Jackhammer Hose Assembly - Red	4122	23
EPDM/SBR Rubber Air/Water - Black	4125	24
EPDM/SBR Rubber Air/Water - Red	4129	24
Bulk Pneumatic Deadman Twinline Hose	4142	25
General Service EPDM Air/Water - Red	4300	26
General Service EPDM Air/Water - Black	4301	27
Textile Reinforced Air Hose - 400 PSI	4302	28
Textile Reinforced Air Hose - 300 PSI	4305	29
MP300 Multi-Purpose NBR Non-Conductive	4306	30
Atlas - MP500 Non-Conductive MSHA - Yellow	4308	31
Wire Reinforced Air Hose	4805	32
Wire Braid Reinforced Air Hose	4806	33
Hi-Temp Air Hose - Wire Reinforced	4807	34
CHEMICAL HOSE		
Cross-Linked Polyethylene Suction Hose	4430	36
UHMWPE Chemical Suction Hose	4433	37
FOOD HOSE		
Polyurethane FDA USDA Material Hose SΩ	3000	39
HD PVC USDA 3-A Liquid Food Suction Hose	3010	40
PVC FDA 3-A Liquid Suction Hose	3012	41
FDA Bulk Food Suction Hose	4460	42
FDA Liquid Food Suction Hose FDA Braided PVC Hose	4465	43
	4511 4600	44 45
FDA Spring Wire PVC Hose MATERIAL HANDLING HOSE	4000	40
HD PU Lined, PVC Material Handling Hose	3020	47
Polyurethane Material Handling and Duct Hose	3021	48
Medium Duty PU Lined Material Handling Hose	3022	49
PVC Mulch Resurfacing Hose	3030	50
Abrasion Resistant SBR Material Handling Hose	3035	51
Gunite Hose	4310	52
2-PLY Sandblast Hose	4312	53
Lightweight Sandblast Hose	4313	54
4-Ply Sandblast Hose	4314	55
1/8" Tube Sand & Dry Cement, Powder Discharge	4322	56
3/16" Tube Sand & Dry Cement, Powder Discharge	4323	56
1/4" Tube Sand & Dry Cement, Powder Discharge	4324	56
Concrete Placement Hose - 800 PSI	4370	57
Textile Concrete Placement Hose	4373	58
Concrete Placement Hose - 1300 PSI	4375	59
Hot Air Blower Hose	4425	60
Plaster and Grout Hose	4428	61
Bulk Material Suction Hose	4470	62

MINE SPRAY HOSE	Series	Page
MSHA Mine Spray Hose	4182	64
Washdown Service /MSHA Mine Spray	4183	65
PETROLEUM HOSE		
PU Drop Suction/Delivery Gas & alt fuels - $S\Omega$	3040	67
PU Drop Suction/Delivery Gas & alt fuels - $S\Omega$	3045	68
PU Gasoline and Alt Fuel Vapor Recovery - $S\Omega$	3050	69
HD PUGasoline and Alt Fuel Vapor Recovery - $\ensuremath{S\Omega}$	3053	70
NBR/PVC Drop Suction/Delivery Gasoline - S Ω	3058	71
Oilfield Clean-Up & Spill Recovery Hose	3085	72
Safety Oilfield Clean-Up and Recovery Hose - $\ensuremath{S\Omega}$	3087	73
Blue Low Temp Petroleum Suction - Corrugated	4410	74
Nitrile Petroleum Suction Hose - 300 PSI	4414	75
Nitrile Petroleum Suction Hose - 150 PSI	4420	76
Tank Truck Hose - Red Corrrugated	4421	77
Nitrile Petroleum Suction Hose - 400 PSI	4424	78
Dreamflex™ Petroleum Transfer & Suction	4426	79
Hot Tar & Asphalt Suction Hose - 150 PSI	4429	80
Oilfield Petro Waste Suction Hose	4436	81
Red Diamond Oilfield Special 5K	5201	82
Red Diamond Rig Hose - 4SH	5205	83
Red Diamond Hot Oiler Hose	5210	84
SAE30-R11 Fuel Line	4J30	85
STEAM HOSE		
EPDM Steam Hose	4815	87
EPDM Red Steam Hose	4816	88
WATER HOSE		
HD Sub-Zero Cold Weather Clear PVC Suction	3074	91
Heavy Duty PVC Suction and Transfer Hose	3076	92
NBR/PVC Suction Hose	3080	93
Rubber 2-Ply Water Discharge Hose	4352	94
Rubber 4-Ply Water Discharge Hose	4354	95
Nitrile/PVC Oil Resistant Discharge Hose - Yellow	4358	96
Nitirle/PVC Oil Resistant Discharge Hose - Black	4359	97
Thermally Non-Conductive Furnace Door Hose	4380	98
Rubber Water Suction hose	4450	99
Blue PVC Water Discharge Bulk Hose and Assy.	4502	100
Wine Red PVC Water Disch. & Assy Med. Duty	4504	101
Red PVC Water Discharge Hose - Heavy Duty	4515	102
Green PVC Water Suction Hose	4601	103
Clear/White Helix PVC Water Suction Hose	4615	104
HD Double Jacket Mill Discharge Hose & Assemblies	4703	105
Municipal Grade SJ Mill Disch. Hose & Assemblies	4705	106
MSHA Fire Hose Assemblies	4735	107
Mainstream [™] Pressure Washer Assemblies	5823	108

NEW Products highlighted in red.

COUPLINGS & ACCESSORIES

CRIMP PRODUCTS	Series	Page
Crimp Couplings	_	111
Ferrules	-	112
Sleeves	-	113
Assembly Procedure Recommendations	-	114
Crimp Specification	_	115
At-A-Glance Ferrule/Sleeve Selection Chart	-	121
CAM & GROOVE / TANK TRUCK		
Cam & Groove Coupling Specifications	-	122
Male Adapter x Female Thread	А	124
Female Coupler x Male Thread	В	124
Female Coupler x Hose Shank	С	124
Female Coupler x Female Thread	D	125
Male Adapter x Hose Shank	E	125
Male Adapter x Male Thread	F	125
Dust Cap	DC	126
Dust Plug	DP	126
Anti-Leak Alum. C x E Cam Lock Couplings	ALF	127
Dust Cap w/ Lock-Out Handles	DCL	127
Reducing Cam & Groove Couplings & Adapters	-	128
Cam & Groove Couplings - Vapor Recovery	VP	129
TANK TRUCK API Dust Cap	DC	130
TANK TRUCK API Coupler x Adapter	DA	130
TANK TRUCK API Coupler x Coupler	DD	130
TANK TRUCK Gasket for API Coupler	G	130
TANK TRUCK Male Adapter x Flange	A - 3F	131
TANK TRUCK Female Coupler x Flange	D - 3F	131
Accessories for Cam & Groove Couplings	-	131
Safety Pin	SP	131
Security Chain	CH	131
Replacement Gaskets	S	132
Replacement Handles	HRP/ LHP	132
PIN LUG COUPLINGS		
Set M x F PIN Lug Shank Couplings	AB	133
Female PIN Lug Shank Couplings	AB	133
Anti-Leak PIN Lug Couplings - for layflat	AB	133
Replacement Washers	HW	133
UNIVERSAL AIR		
Hose End 2 Lug	HE	134
Male End 2 Lug	ME	134
Female End 2 Lug	FE	134

UNIVERSAL AIR CONTINUED	Series	Page
Washer for 2 Lug	UG	134
Hose to Hose Cable	HHWC	134
Hose to Tool Cable	HTWS	134
Hose End 4 Lug	HE	135
Female End 4 Lug	FE	135
Washer for 4 Lug	UG	135
3-Way Connector	TWC	135
Dead End	BEC	135
Safety Pin & Lanyard	SPL	135
INDUSTRIAL QUICK CONNECTS		
Couplers	QC	136
Plug	QP	136
Competitive Interchange	-	136
		100
GROUND JOINTS		
Female Ground Joint	GJ	137
Female Spud	GF	137
Double Spud	GDS	137
Male Spud	GMS	137
SANDBLAST		
Hose End	Q	138
Nozzle Holders	NH	138
Threaded Pot Ends	SB	138
Gaskets for Metal Hose/Pot End	QW	138
LOCKING LEVER PUMP COUPLINGS		
Male Ball x Shank	BMS	139
Female Socket x Shank	BFS	139
Male Ball x Thread	BMT	139
Female Socket x Thread	BFT	139
O-Ring	BOR	139
Full Assembly	BGA	140
Lever Ring	BLR	140
Male Ball x Flange	BMF	140
Female Socket x Flange	BFF	140
150 ASA Flange Dimensions	-	140
NIPPLES & ACCESSORIES		
Combination Nipples	CN	141
Hex Air Hose Nipples	MS	146
Tube Hose Mender	SM	146
	0.01	

COUPLINGS & ACCESSORIES

INTERLOCKING CLAMPS	Series	Page
Instructions for Installing 2,4 & 6 Bolt	-	142
Double Bolt Hose	DB	144
Spiral Double Bolt	SDB	145
BRASS BALL VALVES		
Brass Valves - 600 to 400 WOG	BV	147
Mini Ball Valves	MBV	148
FOOT VALVES		
Foot Valves for Water Suction Hose - Painted Red	FV	148
NOZZLES		
Straight Stream Brass	BN	149
Fog	FN	149
WEENOUES		
WRENCHES	CIM	150
Spanner for Pin Lug Couplings	SW	150 150
Universal Spanner	US	
Adjustable Hydrant	HYD	150
STRAINERS		
Round Hole	RHS	151
Square Hole	SHS	151
Tube	TRHS	151
Top Hole	THS	151
Bottom Hole	BHS	151
HYDRANT ADAPTERS Brass	HAB	151
Replacement Gasket	HAG	151
	T I/ (G	101
OIL & GAS DRILLING		
Strainers - Sugar Cone Type	CS	152
Pump Plate Strainers	25PS	152
Sight Glass - Polycarbonate	SGT	153
Polycarbonate Sight Glass Flanges	SGF	153
THERMOPLASTIC HOSE ACCESSORIES	0000	4 5 4
Banding Coils	3098	154
Banding Sleeves	3099	154

WWW.JASONINDUSTRIAL.COM

REGULATORY ORGANIZATIONS LIST

Organizations Having Regulations or Specifications for Hose

U.S. Government Agencies

DOD	Department of Defense
DOT	Department of Transportation
FDA	Food and Drug Administration
MSHA	Mine Safety and Health Administration
NHTSA	National Highway Traffic Safety Administration
OSHA	Occupational Safety & Health Administration
PHA	Public Health Administration
USCG	U.S. Coast Guard
USDA	U.S. Department of Agriculture

Canadian Agencies and Organizations

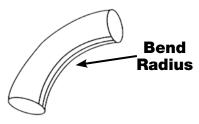
- **CGA** Canadian Gas Association
- **CGSB** Canadian Government Specifications Board
- **RAC** Rubber Association of Canada
- **CSA** Canadian Specifications Association

Other Organizations

- ABS American Bureau of Shipping
- **ANSI** American National Standards Institute
- API American Petroleum Institute
- ARPM Association for Rubber Products Manufacturers
- BIA Boating Industry Association
- **BSI** British Standards Institute
- **CARB** California Air Resource Board
- CGA Compressed Gas Association
- DIN Duetches Institut for Normung -German Standards
- **DNV** Det Norske Veritas
- EN European Norms
- **FM** Factory Mutual Research
- **FPS** Fluid Power Society
- **ISO** International Organization for Standardization
- **JIC** Joint Industrial Council (now defunct)
- **JIS** Japanese Industrial Standards
- NAHAD National Association of Hose and Accessories Distributors
- **NFPA** National Fire Protection Association National Fluid Power Association
- RMA Rubber Manufacturers Association (replaced by ARPM)
- **ROHS** Restriction of Hazardous Substances
- SAE Society of Automotive Engineers
- **TFI** The Fertilizer Institute
- UL Underwriters Laboratories

ARPM Oil Resistance Data

The effects of oil on rubber depend on a number of factors that include the type of rubber compound, the composition of the oil, the temperature and the length of exposure. The ARPM (replacing RMA) has developed a classification of hose performance based on simple immersions in IRM 903 oil (High Swell) at 212° F for 70 hours. Oil resistance classifications for rubber stocks are shown in the table in the next column.


Hose Physical Properties After Exposure To Oil

Classification	Volume Change MAX.	Tensile Strength Retained
Class A (High Oil Resistance)	+25%	80%
Class B (Medium-High oil Resistance)	+65%	50%
Class C (Medium Oil Resistance)	+100%	40%

FLEXIBILITY AND MINIMUM BEND RADIUS

Minimum Hose Bend Radius Data (MBR)

The Bend Radius is the radius of the bent section of a hose measured to the inner-most surface of the curved portion. It is important because the minimum bend radius is the maximum amount the hose can be bent without being kinked or damaged.

General formula to determine bend length:

Angle of Bend x 2π = minimum length of hose to make bend 360° r = given bend radius of the hose

Example: to make a 90° bend with a hose with a 2" I.D.

Given r = 4.5 inches 90° (2 x 3.14 x 4.5) 360° .25 x 2 x 3.14 x 4.5 = 7 inches

7 inches is the minimum length the hose can be bent without damaging it. Remember that the bend should take place over the entire minimum length and not a portion of it. In addition, the formula does not mean that 7 inches will be long enough to meet application needs. It only means that if the 90° bend takes place in less than 7 inches, the hose could be damaged.

 Reprinted with permission from the Association of Rubber Products Manufacturers (ARPM), Hose Handbook, RMA/IP-2/2003 (ARPM has replaced RMA)

I. HOSE SELECTION - STAMPED

It is important to have all the required information to select the proper hose for any hose application. The acronym **"STAMPED"** can be used to remember the required information as follows:

S stands for SIZE: I.D. and length; any O.D. constraints

- overall length should be specified to include fittings
- tolerances need to be specified if special requirements exist

I.D., O.D. and overall length of the assembly

- To determine the replacement hose I.D., read the layline printing on the side of the original hose. If the original hose layline is painted over or worn off, the original hose must be cut an inside diameter measured for size.
- The inside diameter of the hose must be adequate to keep pressure loss to a minimum, maintain adequate flow, and avoid damage to the hose due to heat generation or excessive turbulence. The hose should be sized according to the nomographic chart at the end of this section.
- Length Tolerances:

Assembly Length Tolerance					
Inc	hes	Millim	neters		
Up to 18	+/- 0.125	Up to 450	+/- 3		
18 to 36	+/- 0.25	450 to 900	+/- 6		
36 to 50	+/- 0.50	900 to 1270	+/- 13		
Over 50	+/- 1%	Over 1270	+/- 1%		

- Flow Rate/Fluid Velocity The flow rate of the system in conjunction with the inside diameter of the hose will dictate the fluid velocity through the hose. Typical fluid velocities can be seen in the nomographic chart found at the end of this section. Please consult Jason Industrial for specific recommended velocity ranges. Please note that suction line recommendations are different than pressure lines.
- **T** stands for **TEMPERATURE** of the material conveyed and environmental conditions.
- Are there factors such as heat sources in the environment in which the hose will be used?
- Continuous (average) and minimum and maximum temperatures have to be specified for both the environment and material conveyed.
- Note if flame resistance or flammability will be an issue
- Sub-zero exposure
- Care must be taken when routing near hot manifolds and in extreme cases a heat shield may be advisable.
- Other things to consider: maximum intermittent ambient temperature, fluid temperature, ambient temperature and maximum temperature.

A stands for APPLICATION, the conditions of use

- Configuration/routing (add a sketch or drawing if applicable)
- Is the hose hanging, laying horizontally, supported, unsupported (orientation and aspect of the hose)
 - What else is attached to the hose, any external load on the hose bend radius requirements, flexibility elongation considerations with working pressure
- Quantify anticipted movement and geometry of use requirements
- Intermittent or continuous service
- Indoor and outdoor use
- Unusual mechanical loads
- Excessive abrasion
- Electrical conductivity requirements
- Equipment type
- External conditions abrasion, oil (specify type), solvents(specify type), acid (specify type and concentration), ozone, salt water
- Hose now in use
 - Type of hose
 - Service life being obtained and description of failure or source of customer dissatisfaction
- Strength and frequency of impulsing or pressure spikes
- Non-Flexing applications (static), flexing applications (dynamic)
- Vacuum requirements

M stands for the MATERIAL or MEDIA being conveyed, type and concentration

- Are there special requirements for this hose tube
 - Any special specifications (or agency requirements) that need to be considered (e.g., FDA, API)
 - Will the material be continuously flowing, or sit in the hose for long periods of time (specify)
- Media velocity, flow rate
- Chemical name/concentration (MSDS)
- Solids, description and size
- Fluid Compatibility Some applications require specialized oils or chemicals to be conveyed thrrough the system. Hose selection must assure compatibility of the hose tube. In addition to the hose materials, all other components, which make up the hose assembly (hose ends, o-rings, etc.) must also be compatible with fluid being used. Depending on the fluid, your hose supplier may lower the maximum temperature or pressure rating of the assembly. When selecting any hose assembly, always consult Jason Industrial for recommendations.

P stands for the PRESSURE to which the assembly will be exposed

- System pressure, including pressure spikes. Hose assembly working pressures must be equal to or greater than the system
 pressure. Pressure spikes greater than the maximum working pressure will shortern hose life and must be taken into
 consideration.
- Temperature implications
- Vacuum considerations
- Maximum Operating Pressure This is the maximum pressure that the system should be exposed to in normal operating conditions. For hydraulic hose assemblies, this pressure should be indicated by the relief setting of the system. Both the hose and hose end should not be rated to a pressure less than the maximum operating pressure of the system.
 Pressure Spikes When a hydraulic system is subjected to a large load in a short period of time, the system pressure can overshoot the relief pressure and exceed the maximum operating temperature. Frequent pressure spikes can reduce the life of hydraulic hose assemblies In general, spiral hose constructions are better suited to high impulse applications, which involve flexing and large pressure spikes. However, there are specialized braided hoses available from Jason Industrial. Please consult us if there are multiple constructions which may meet your needs.

E stands for ENDS; style, type, orientation, attachment methods, etc.

- Uncoupled or coupled hose; hose with built-in fittings
- Specify end style (see couplings & accessories section of this catalog)
- Materials and dimensions (steel, stainless, etc.)
- Conductivity requirements

D stands for **DELIVERY**

- Specific to customer requirements
- Testing requirements
- Certification requirements
- Special packaging requirements
- Tagging requirements
- Also refers to Determined Overall Length when working with metal hose.

S.T.A.M.P.E.D. INFORMATION REQUEST FORM

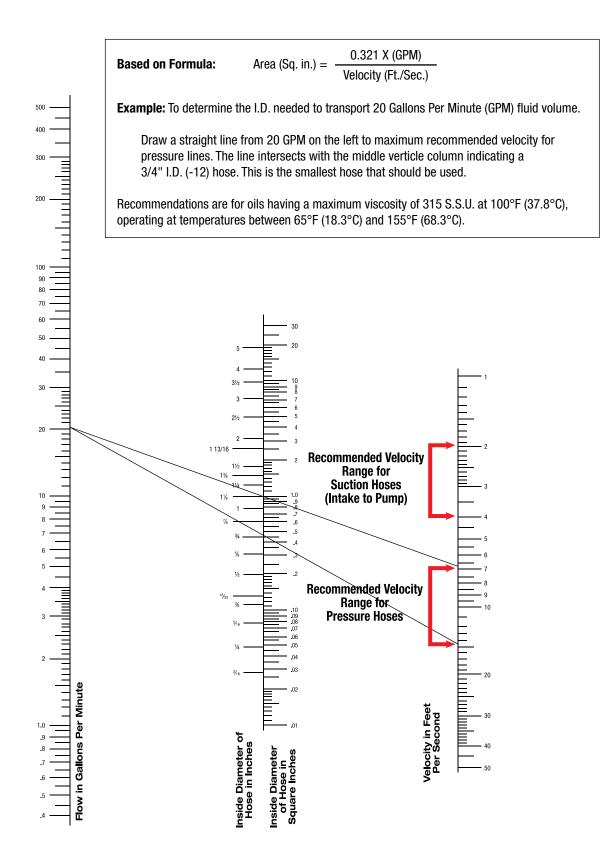
COMPANY:	FAX:									
CONTACT:	EMAIL:									
ADDRESS:	P.O.#:									
PHONE:	TERMS:									
SIZE	INSIDE DIAMETER OUTSIDE DIAM			NETER	R OVERALL LENGTH		TH TOLI	TOLERANCE		
		MATERI		/EYED		EN	VIRONM	ENTAL TEMPER	ATURE	
TEMPERATURE	٨	AINIMUM		MAXIMUN	Λ		NIMUM		хімим	
		°F /°C		°F /°C		(°F /°C	0	F /°C	
Application	Type and Flow Rate									
Material/ Media	MATERIAL C				ONVEYED EXTERNAL ENVIRONMENT:					
5	МАХ		ING PRE	ESSURE		SPIKES VACUUM				
Pressure	PSI/BAR				PSI/BAR Inc		Inches of Hg/	nches of Hg/BAR		
E	END	STYLE/ MATERIAL	SIZE	THREADS HOLE ALI				ATTACHMENT METHODS	CAPI	PED
Ends	1								Y	N
	2								Y	Ν
	QUANTITY REQUIRED:					DATE REQUIRED:				
	РАСКА	GE TYPE:					1			
DELIVERY	PICK UP DATE:					SHIP VIA:				
	TESTIN	IG REQUIRED): Y	N		TYPE:				
	CERTIFICATION REQUIRED: Y N					TYPE:				

SPECIAL REQUIREMENTS:

WWW.JASONINDUSTRIAL.COM

II. PRESSURE RE-RATING PERCENTAGES FOR INCREASED TEMPERATURES

As temperatures go up, pressure ratings go down. When considering the proper hose for any application, check this table if temperature is a consideration in the decision. This table will indicate the percentage of the initial working pressure of the assembly by temperature.


Pres	sure Re-Ra	ting Perc	Table 2 entages for Increased	Temperatures
Temp	erature	PVC	Steam &	All Other
°F	°C	Hose (%)	Hot Asphalt (%)	Hose Types (%)
70	21	100	100	100
90	32	82	95	91
150	66	30	81	64
200	93	N/R	68	42
250	121	N/R	56	20
300	149	N/R	44	N/R
350	177	N/R	32	N/R
400	204	N/R	20	N/R
450	232	N/R	8	N/R
500	260	N/R	N/R	N/R
N/R = Not R	ecommended	ł	·	

NOMOGRAPHIC CHART

Flow Capacity of Hose Assemblies at Recommended Flow Velocities

III. COMMON TERMS

Term	Definition	Term	Definition			
I.D.	Inside diameter of hose opening	Weight/ft.	Weight per foot of hose			
O.D.	Outside diameter of hose	Bend Radius	The minimum radius to which the hose will bend before it is damaged			
Max W.P.	Maximum recommended working pressure	working pressure Standard Lengths The				
PSI	Pressure in pounds per square inch	Standard Lengths	stocked for distributors			
Design Factor	and a 3:1 design factor has a minimum b pressure and design factor of an assemi	urst of 900psi, or 3 times oly can be significantly al led. No hose is to ever be	e, an air hose with a 300psi working pressure the working pressure. However, the working tered if incorrect fittings or clamps are used a used at or near the burst pressure for any			

IV. THREAD CHART

Abbreviation	Thread Name	Seal Method	Thread Compatibility
GHT	Garden Hose Thread	Washer Seal	GHT - GHT
JIC 37° FLARE	Joint Industrial Council	Mechanical Seal	JIC Male - JIC Female
NH OR NST	American Standard Fire Hose Thread National Hose or National Standard Thread	Washer Seal	NH or NST- NH or NST
NPT	American Standard Taper Pipe Thread National Pipe Thread	Thread Sealant or Washer Seal	NPT - NPT or NPTF
NPTF	American Standard Taper Pipe Fuel Dryseal National Pipe Tapered Fuel	Thread Sealant or Washer Seal	NPTF- NPTF or NPT
NPSH	American Standard Straight Pipe for Hose Couplings National Pipe Straight Hose	Washer Seal	NPSH - NPSH, or NPT
NPSM	American Standard Straight Mechanical Joints National Pipe Straight Mechanical	Washer Seal or Mechanical Seal	NPSM - NPSM, NPT or NPTF
SAE 45° FLARE	Society of Automotive Engineers	Mechanical Seal	SAE Male - SAE Female
Note: Thread sealant	is required for pipe thread connections	s, except for NPTF during initial use	e, although it is recommended
Note: Compatibility of	thread type does not ensure compati	bility of fittings. Always use mating	fittings of the same type

COMMONLY USED COMPOUNDS - RUBBER

ASTM	Common Name	Composition	General Properties
AU or EU	Urethane	Polyester Urethane	Excellent abrasion, tear and solvent resistance, good aging. Poor high temperature properties
CR	Neoprene® *	Chloroprene	Good weathering resistance and flame retarding. Moderate resistance to petroleum-based fluids. Good physical properties.
EPDM	Ethylene Propylene Rubber	Ethylene-propylene diene- monomer	Excellent ozone, chemical and aging characteristics. Good heat resistance. Poor resistance to petroleum- based fluids
NBR	Nitrile	Acrylonitrile- butadiene	Excellent resistance to petroleum-based fluids. Moderate resistance to aromatics. Good physical properties.
NR	Natural Rubber	Isoprene, Natural	Excellent physical properties, including abrasion and low temperature resistance. Poor resistance to petroleum-based fluids.
SBR	SBR	Styrene-Butadiene	Good physical properties, including abrasion resistance. Poor resistance to petroleum-based fluids.
XLPE	Cross-Linked Polyethylene	Polyethylene and cross-linking agent	Excellent chemical resistance, with good heat and electrical properties.
* registered trademark of DuP	ont Corporation		

COMMONLY USED COMPOUNDS - PLASTIC

ASTM	Common Name	Composition	General Properties
PE	Polyethylene	Polyethylene	Excellent dielectric properties. Excellent resistance to water, acids, alkalis and solvents. Good abrasion and weathering resistance.
UHMW-PE	UHMWPE	Ultra High Molecular Weight Polyethylene	Excellent resistance to a broad range of chemicals, excellent weight and abrasion resistance.
PVC	PVC	Polyvinyl Chloride	Good weathering, moisture and flame resistance. General resistance to alkalis nd weak acids. Good abrasion resistance.
TPE	Thermoplastic Rubber	Thermoplastic Polyolefins and Block Copolymers of Styrene and Butadiene	Good weathering and aging resistance. Good for water, diluted acids and bases.

Important Instructions for Properly Grounding Industrial Hoses Containing Static Wires or Helical Wire

Warning User Responsibility: Flow of certain materials inside of a hose can cause a dangerous static charge to build up inside the hose. When the static charge reaches a sufficient level, it can shock or create an electrical discharge which can be deadly leading to fire and explosions.

Unless proper steps are taken during hose assembly, even hoses that have built in grounding wires (conductive wire or helical wire) will not provide sufficient grounding to eliminate static charge build up which can lead to property damage, injury, or death.

Step 1.

Identify the type of mechanism used in the particular hose for providing the grounding path.

Step 2.

The mechanism (the conductor being a special grounding wire or helical wire) must be carefully exposed on both ends of the length of hose and enough length (at least 1/2" or 13 mm) exposed to allow placement into direct contact of the clean metallic coupling insert. This is normally done by bending the wire into the inside of the tube surface which will provide sufficient contact with the insert. Care should be exercised that the tube is not damaged and that the length of conductor is not so long as to create a leak path along the insert.

Step 3.

Assemble the coupling as specified by the manufacturer. Suitable lubricant may be used that will not interfere with the conductive path.

Step 4.

After assembly, you must properly verify that the hose is conductive from end to end (10 Ohms or less). If not, the assembly is not suitable for use. It should be understood that both the points of connection to the hose must continue to provide conductivity to ground for the system. Special requirements beyond this level of conductivity may be required. If so, the assembler and user must take additional steps as may be required to assure compliance.

NON CATALOGED HOSE REQUEST

While Jason catalogs many useful hose products for a multitude of applications, there is always the possibility that we may not catalog a hose item you need. By filling out this form, we will give our factories and Jason the opportunity to quote your request.

Company Name	9		Contact	
Address			Phone	
City			E-Mail	
Salesman			Fax	
Is there a hose	we can cross ov	ver?		
Manufacturer			Part Number	
Please fill in the	e blanks:			
ID	OD	WP PSI	Burst PSI	Length
	ne following quest hose or a dischar			
If a suction hose	, what vacuum is	required?		
What is the maxi	mum temperature	e of the material be	ing conveyed? F	
••		ny pertinent inform bil/acid/chemical e	ation such as abrasion, bend nvironment.	d radius,

What end connections will be used and how will they be attached?

Are there special requirements such as color, static wire(s), approvals or branding/layline?

WWW.JASONINDUSTRIAL.

CARE, MAINTENANCE & STORAGE OF HOSE

Hose has a limited life and the use must be alert to signs of impending failure, particularly when the conditions of service include high working pressures and/or the conveyance or containment of hazardous materials. The periodic inspection and testing procedures described here provide a schedule of specific measures which constitute a minimum level of user action to detect signs indicating hose deterioration or loss of performance before conditions leading to malfunction or failure are reached.

General instructions are also described for the proper storage of hose to minimize deterioration from exposure to elements or environments which are known to be deleterious to rubber products. Proper storage conditions can enhance and extend substantially the ultimate life of hose products.

General Care and Maintenance of Hose

SAFETY WARNING: Failure to properly follow the manufacturer's recommended procedures for the care, maintenance and storage of a particular hose might result in the failure to perform in the manner intended and might result in possible damage to property and serious bodily harm.

Hose should not be subjected to any form of abuse in service. It should be handled with reasonable care. Hose should not be dragged over sharp or abrasive surfaces unless specifically designed for such service. Care should be taken to protect hose from severe end loads for which the hose or hose assembly were not designed. Hose should be used at or below its rated working pressure; any changes in pressure should be made gradually so as not to subject the hose to excessive surge pressures. Hose should not be kinked or be run over by equipment. In handling the large size hose, dollies should be used whenever possible; slings or handling rigs, properly placed, should be used to support heavy hose used in oil suction and discharge service.

General Test & Inspection Procedures

An inspection and hydrostatic test should be made at periodic intervals to determine if a hose is suitable for continued service. A visual inspection of the hose should be made for loose covers, kinks, bulges, or soft spots which might indicate broken or displaced reinforcement. The couplings or fittings should be closely examined and, if there is any sign of movement of the hose from the couplings, the hose should be removed from service. The periodic inspection should include a hydrostatic test for one minute at 150% of the recommended working pressure of the hose. An exception to this would be the woven jacketed fire hose.* During the hydrostatic test, the hose should be straight, not coiled or in a kinked position. Water is the usual test medium and, following the test, the hose may be flushed with alcohol to remove traces of moisture. A regular schedule for testing should be followed and inspection records maintained.

Safety Warning: Before conducting any pressure tests on hose, provision must be made to ensure the safety of the personnel performing the tests and to prevent any possible damage to property. Only trained personnel using proper tools and procedures should conduct any pressure tests.

1. Air or any other compressible gas must never be used as the test media because of the explosive action of the gas should a failure occur. Such a failure might result in possible damage to property and serious bodily injury.

2. Air should be removed from the hose by bleeding it through an outlet valve while the hose is being filled with the test medium.

3. Hose to be pressure tested must be restrained by placing steel rods or straps close to each end and at approximate 10' (3m) intervals along its length to keep the hose from "whipping" if failure occurs; the steel rods or straps are to be anchored firmly to the test structure but in such a manner that they do not contact the hose which must be free to move.

4. The outlet end of hose is to be bulwarked so that a blown-out fitting will be stopped.

5. Provisions must be made to protect testing personnel from the forces of the pressure media if a failure occurs.

6. Testing personnel must never stand in front of or in back of the ends of a hose being pressure tested.

7. If liquids such as gasoline, oil, solvent, or other hazardous fluids are used as a test fluid, precautions must be taken to protect against fire or other damage should a hose assembly fail and the test liquid be sprayed over the surrounding area.

Storage

Rubber hose products in storage can be affected adversely by temperature, humidity, ozone, sunlight, oils, solvents, corrosive liquids and fumes, insects, rodents and radioactive materials.

The appropriate method for storing hose depends to a great extent on the size (diameter and length), the quantity to be stored, and the way in which it is packaged. Hose should not be piled or stacked to such an extent that the weight of the stack creates distortions on the lengths stored at the bottom.

Since hose products vary considerably in size, weight and length, it is not practical to establish definite recommendations on this point. Hose having a very light wall will not support as much load as could a hose having a heavier wall or hose having a wire reinforcement. Hose which is shipped in coils or bales should be stored so that the coils are in a horizontal plane.

Whenever feasible, rubber hose products should be stored in their original shipping containers, especially when such containers are wooden crates or cardboard cartons which provide some protection against the deteriorating effects of oils, solvents, and corrosive liquids; shipping containers also afford some protection against ozone and sunlight.

Certain rodents and insects will damage rubber hose products and adequate protection from them should be provided.

Cotton jacketed hose should be protected against fungal growths if the hose is to be stored for prolonged periods in humidity conditions in excess of 70%

The ideal temperature for storage of rubber product ranges from 50° to 70°F (10-21°C) with a maximum limit of 100°F (38°C). If stored below 32°F (0°C), some rubber products become stiff and would require warming before being placed in service. Rubber products should not be stored near sources of heat, such as radiators, base heaters, etc., nor should they be stored under conditions of high or low humidity.

To avoid adverse effects of high ozone concentration, rubber hose products should not be stored near electrical equipment that may generate ozone or be stored for any lengthy period in geographical areas of known high ozone concentration.

Hose should not be stored in locations where the ozone level exceeds the National Institute of Occupational Safety and Health's upper limit of 0.10 ppm. Exposure to direct or reflected sunlight-even through windows should also be avoided. Uncovered hose should not be stored under fluorescent or mercury lamps which generate light waves harmful to rubber.

Storage areas should be relatively cool and dark, and free from dampness and mildew. Items should be stored on a first-in, first-out basis, since even under the best of conditions, an unusually long shelf life could deteriorate certain rubber products.

*Woven jacket fire hose should be tested in accordance with the service test provisions contained in the current edition of the National Fire Protection Association Bulletin No. 1962 - Standard for the Care, Use and Service Testing of Fire Hose.

 Reprinted with permission from the Association of Rubber Products Manufacturers (ARPM), Hose Handbook, RMA/IP-2/2003 (ARPM has replaced RMA)

18

NOTES	WWW.JASONINDUSTRIAL.COM	WWW.JAS		

Series	Descri	ption	Page
4103		Red PVC Air Hose - Medium Oil Resistant	21
4105		Multi-Purpose TPR Hose - Red	22
4121/4122		Jackhammer Hose Assembly - Yellow/Red	23
4125/4129		EPDM/SBR Rubber Air/Water Hose - Black/Red	24
4142		Bulk Pneumatic Deadman Twinline Hose	25
4300	NEW!	General Service EPDM Air/Water - Red	26
4301	NEW!	General Service EPDM Air/Water - Black	27
4302		Textile Reinforced Air Hose - 400 PSI	28
4305		Textile Reinforced Air Hose - 300 PSI	29
4306	NEW!	MP300 Multi-Purpose NBR Non-Conductive	30
4308	NEW!	Atlas - MP500 Non-Conductive MSHA - Yellow	31
4805		Wire Reinforced Air Hose	32
4806		Wire Braid Reinforced Air Hose	33
4807		Hi-Temp Air Hose - Wire Reinforced	34

Hoses are constantly being upgraded. Jason Industrial reserves the right to make changes in construction without prior notice.

We disclaim any liability for use of our products in applications other than which they are designed.

20

de

4103

RED PVC AIR HOSE - MEDIUM OIL RESISTANT

CONSTRUCTION: Tube and cover are PVC, smooth, medium oil resistance, ARPM Class C. Cover is red. Reinforcement is one braid, synthetic material.

TEMPERATURE: -15°F (-26°C) to +150°F (+66°C)

BRANDING: ID XX" (XXmm) Jason logo WP PSI 4103 (Country of Origin).

APPLICATION: General purpose use, including air, water and mild chemical applications.

FEATURES:

- Oil mist resistant tube
- Non-marking cover
- Ozone and weather resistant
- Resistant to ultra-violet (UV) light rays

Part Number	I.D.		O.D.		Reinf. Braids	Max. W.P. @ 68° F		Vacuum @ 68°F	Weight		Minimum Bend Radius		Std. Length
Number	inch	mm	inch	mm	Braids	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4103-0025-328	1/4	6.35	0.44	11.18	1	300	20.68	n/a	0.07	0.10	1.70	43.20	328
4103-0031-328	5/16	7.94	0.50	12.70	1	300	20.68	n/a	0.08	0.12	2.10	53.30	328
4103-0037-328	3/8	9.53	0.59	14.99	1	300	20.68	n/a	0.10	0.15	2.50	63.50	328
4103-0050-328	1/2	12.70	0.75	19.05	1	300	20.68	n/a	0.16	0.24	3.30	83.80	328
4103-0062-328	5/8	15.88	0.91	23.11	1	300	20.68	n/a	0.22S	0.33	4.20	106.70	328
4103-0075-164	3/4	19.05	1.05	26.59	1	215	14.81	n/a	0.28	0.42	5.00	127.00	164
4103A-0075-164*	3/4	19.05	1.10	28.00	1	300	20.68	n/a	0.30	0.45	5.00	127.00	164
4103-0100-164	1	25.40	1.33	34.00	1	170	11.71	n/a	0.41	0.61	6.70	170.20	164
4103A-0100-164*	1	25.40	1.33	34.00	1	300	20.68	n/a	0.44	0.66	6.70	170.20	164
			Cou	pled 1/4	" Male NF	T x 1/4"	Male NP1	r x 50' Hos	e Assemb	ly			
4103-037450	3/8	9.53	0.59	14.99	1	300	20.68	n/a	0.10	0.15	2.50	63.50	50

DESIGN FACTOR: 3:1

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

* 3/4 & 1" sizes in 300 PSI will replace the current part numbers of 4103-0075-164 & 4103-0100-164 when inventories are depleted

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

4105

MULTI-PURPOSE TPR HOSE - RED

CONSTRUCTION: Tube and cover are TPR (NBR/PVC), smooth, high oil resistance, ARPM Class A. Cover is red. Reinforcement is one braid, synthetic material.

TEMPERATURE: -15°F (-26°C) to +176°F (+80°C)

BRANDING: 4105 JASON logo ID in. (mm.) WP PSI MULTIPURPOSE-AIR-WATER-PETROLEUM ARPM CLASS A

APPLICATION: For air, oil and medium grade fuels used in construction, shipyards, mining and agriculture.

FEATURES:

- Class A oil mist resistant tube and cover
- Non-marking cover
- Ozone and weather resistant
- Resistant to ultra-violet (UV) light rays

Part	I.	D.	0	.D.	Reinf. Braids		. W.P. 8° F	Vacuum @ 68°F	We	ight		imum Radius	Std. Length
Number	inch	mm	inch	mm	Braius	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4105-0025-328	1/4	6.35	0.44	11.18	1	300	20.68	n/a	0.07	0.10	1.70	43.20	328
4105-0031-328	5/16	7.94	0.50	12.70	1	300	20.68	n/a	0.08	0.12	2.10	53.30	328
4105-0037-328	3/8	9.53	0.59	14.99	1	300	20.68	n/a	0.10	0.15	2.50	63.50	328
4105-0050-328	1/2	12.70	0.75	19.05	1	300	20.68	n/a	0.16	0.24	3.30	83.80	328
4105-0075-164	3/4	19.05	1.05	26.59	1	215	14.81	n/a	0.28	0.42	5.00	127.00	164
4105A-0075-164*	3/4	19.05	1.10	28.00	1	300	20.68	n/a	0.30	0.45	5.00	127.00	164
4105-0100-164	1	25.40	1.33	34.00	1	170	11.71	n/a	0.41	0.61	6.70	170.20	164
4105A-0100-164*	1	25.40	1.33	34.00	1	300	20.68	n/a	0.44	0.66	6.70	170.20	164

DESIGN FACTOR: 3:1

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

* 3/4 & 1" sizes in 300 PSI will replace the current part numbers of 4105-0075-164 & 4105-0100-164 when inventories are depleted

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

JACKHAMMER HOSE ASSEMBLY - YELLOW JACKHAMMER HOSE ASSEMBLY - RED

CONSTRUCTION: Tube is an SBR/NBR blend. Cover is EPDM, yellow or red. Reinforcement is a two-spiral polyester yarn. Crimped coupling with universal end.

TEMPERATURE: -22°F (-30°C) to +176°F (+80°C)

BRANDING: ID 4121 or 4122 300 PSI WP Production Date.

DESIGN FACTOR: 3:1

4121

4122

APPLICATION: For jackhammer applications. **FEATURES:**

- Coupling crimped:
 - Better hose/coupling retention
 - No snagging
 - No leaking
- Easy to handle
- Weather, heat and ozone resistant
- Excellent abrasion resistance
- Hose WP is 300 PSI

Part	Cover Color	I.	D.	ο	.D.	Reinf. Spirals	-	. W.P. 3° F**	Vacuum @ 68°F	We	ight		mum Radius	Std. Length
Number	Color	inch	mm	inch	mm	Spirais	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4121-0075-050	YELLOW	3/4	19.05	1.16	29.50	2	150	10.35	n/a	0.54	0.80	5.00	127.00	50
4122-0075-050	RED	3/4	19.05	1.16	29.50	2	150	10.35	n/a	0.54	0.80	5.00	127.00	50

**Assembly working pressure. Hose WP is 300 PSI

Safety clip and lanyard not supplied. For safety reasons, please follow all OSHA regulations.

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

23

4125 4129

EPDM/SBR RUBBER AIR/WATER HOSE - BLACK EPDM/SBR RUBBER AIR/WATER HOSE - RED

CONSTRUCTION: Tube and cover are EPDM/SBR, red or black cover. Reinforcement is a two-spiral polyester yarn.

TEMPERATURE: -14°F (-26°C) to +180°F (+82°C)

BRANDING: JASON logo ID in. 300PSI WP GP AIR WATER -Yellow ink on black cover and black ink on red cover

APPLICATION: Economical general service hose for air and water in industrial, agricultural and construction applications.

FEATURES:

- Excellent temperature resistance
- Abrasion and ozone resistant
- Flexible and easy to handle

WWW.JASONINDUSTRIAL.COM

24

DESIGN FACTOR: 3:1

Part	1.1	D.	O.D.		Reinf.	Max. W.P. @ 68° F		Vacuum @ 68°F	We	ight	Minimum Bend Radius		Std. Length
Number	inch	mm	inch	mm	Spirals	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4125-04-600	1/4	6.35	0.49	12.50	2	300	24.13	n/a	0.10	0.15	1.50	38.10	600
4125-05-600	5/16	7.94	0.57	14.50	2	300	24.13	n/a	0.12	0.18	2.00	50.80	600
4125-06-600	3/8	9.53	0.65	16.50	2	300	24.13	n/a	0.17	0.25	2.25	57.15	600
4125-08-600	1/2	12.70	0.81	20.50	2	300	24.13	n/a	0.22	0.33	3.00	76.20	600
4125-10-300	5/8	15.88	0.96	24.50	2	300	24.13	n/a	0.30	0.45	3.75	95.25	300
4125-12-300	3/4	19.05	1.14	29.00	2	300	24.13	n/a	0.37	0.55	4.50	114.30	300
4125-16-300	1	25.40	1.38	35.00	2	300	24.13	n/a	0.58	0.86	7.00	177.80	300

4129 RED	COVE	R											
4129-04-600	1/4	6.35	0.49	12.50	2	300	24.13	n/a	0.10	0.15	1.50	38.10	600
4129-05-600	5/16	7.94	0.57	14.50	2	300	24.13	n/a	0.12	0.18	2.00	50.80	600
4129-06-600	3/8	9.53	0.65	16.50	2	300	24.13	n/a	0.17	0.25	2.25	57.15	600
4129-08-600	1/2	12.70	0.81	20.50	2	300	24.13	n/a	0.22	0.33	3.00	76.20	600
4129-10-300	5/8	15.88	0.96	24.50	2	300	24.13	n/a	0.30	0.45	3.75	95.25	300
4129-12-300	3/4	19.05	1.14	29.00	2	300	24.13	n/a	0.37	0.55	4.50	114.30	300
4129-16-300	1	25.40	1.38	35.00	2	300	24.13	n/a	0.58	0.86	7.00	177.80	300


Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

4142

BULK PNEUMATIC DEADMAN TWINLINE HOSE

CONSTRUCTION: Tube and cover are TPR (NBR/PVC). Cover is yellow. Reinforcement is two spirals, synthetic fabric.

TEMPERATURE: -25°F (-32°C) to +180°F (+82°C)

BRANDING: Country of Origin

DESIGN FACTOR: 3:1

APPLICATION: Used to pneumatically engage or disengage the remote control on sandblast machines.

FEATURES:

- Oil resistant
- Bright yellow non-marking cover
- Siamese two line construction
- Heavy duty cover makes this a durable hose

Part	1.1	D.	o	.D.	Reinf.	Max. @ 6		Vacuum @ 68°F	We	ight		mum Radius	Std. Length
Number	inch	mm	inch	mm	Spirals	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4142-0188-328	3/16	4.76	0.42	10.72	2	300	20.68	n/a	0.10	0.15	1.30	31.80	328

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

4300

GENERAL SERVICE EPDM AIR/WATER - RED

a 4300 CS300 EPOW 3.47" ID 300 PSI HKK LP HKDE IN USH 2023 H

CONSTRUCTION: EPDM tube, red EPDM cover, reinforcement is multiple spiral polyester yarn

DESIGN FACTOR: 4:1

TEMPERATURE: -40 °F (-40 °C) to 200 °F (+93 °C)

BRANDING: Jason logo 4300 GS300 EPDM [ID] 300 PSI MAX WP Made in USA* [Date code] - white ink on red cover (GS200 – 200 PSI MAX W.P. for sizes 1-1/4" to 2")

APPLICATION: General service air and water in industrial, ag, and construction applications

FEATURES:

- 80% one piece reels, less scrap
- abrasion and ozone resistant
- flexible and easy to handle

Part Number	1.0) .	0	.D.	Reinf. Braids	-	W.P. 8° F	We	ight		mum Radius	Std. Length
Number	inch	mm	inch	mm	braius	PSI	BAR	lb./ft.	KG/m	inch	mm	(ft.)
4300-0025-500	1/4"	6.35	0.50	12.70	2	300	20.7	0.08	0.12	1.50	38.10	500
4300-0031-500	5/16"	7.94	0.62	15.75	2	300	20.7	0.09	0.13	2.00	50.80	500
4300-0038-500	3/8"	9.53	0.69	17.53	2	300	20.7	0.15	0.22	2.25	57.15	500
4300-0050-500	1/2"	12.70	0.84	21.43	4	300	20.7	0.25	0.37	3.00	76.20	500
4300-0062-500	5/8"	15.88	1.00	25.40	4	300	20.7	0.30	0.45	3.75	95.25	500
4300-0075-500	3/4"	19.05	1.15	29.21	4	300	20.7	0.41	0.61	4.50	114.30	500
4300-0100-500	1"	25.40	1.43	36.20	4	300	20.7	0.51	0.76	7.00	177.80	500
4300-0125-400	1-1/4"	31.75	1.75	44.45	4	200	13.8	0.81	1.21	8.75	222.25	400
4300-0150-400	1-1/2"	38.10	2.00	50.80	4	200	13.8	0.89	1.34	10.50	266.70	400
4300-0200-250	2"	50.80	2.55	64.77	4	200	13.8	1.28	1.9	14.00	355.60	250

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures in the Industrial Hose Guide for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

^{*}Made in the USA of local and globally sourced materials.

4301

GENERAL SERVICE EPDM AIR/WATER - BLACK

CONSTRUCTION: EPDM tube, black EPDM cover, reinforcement is multiple spiral polyester yarn

TEMPERATURE: -40 °F (-40 °C) to 200 °F (+93 °C)

BRANDING: Jason logo 4301 GS300 EPDM [ID] 300 PSI MAX WP Made in USA* [Date code] - white ink on black cover

DESIGN FACTOR: 4:1

APPLICATION: General service air and water in industrial, ag, and construction applications

FEATURES:

- 80% one piece reels, less scrap
- abrasion and ozone resistant
- flexible and easy to handle

Part Number	1.1	D.	0	.D.	Reinf. Braids	-	W.P. 8° F	We	ight		mum Radius	Std. Length
Number	inch	mm	inch	mm	Braids	PSI	BAR	lb./ft.	KG/m	inch	mm	(ft.)
4301-0025-500	1/4"	6.35	0.50	12.70	2	300	20.7	0.08	0.12	1.50	38.10	500
4301-0031-500	5/16"	7.94	0.62	15.75	2	300	20.7	0.09	0.13	2.00	50.80	500
4301-0038-500	3/8"	9.53	0.69	17.53	2	300	20.7	0.15	0.22	2.25	57.15	500
4301-0050-500	1/2"	12.70	0.84	21.43	4	300	20.7	0.25	0.37	3.00	76.20	500
4301-0062-500	5/8"	15.88	1.00	25.40	4	300	20.7	0.30	0.45	3.75	95.25	500
4301-0075-500	3/4"	19.05	1.15	29.21	4	300	20.7	0.41	0.61	4.50	114.30	500
4301-0100-500	1"	25.40	1.43	36.20	4	300	20.7	0.51	0.76	7.00	177.80	500

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures in the Industrial Hose Guide for more information.

*Made in the USA of local and globally sourced materials.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

4302

TEXTILE REINFORCED AIR HOSE - 400 PSI

CONSTRUCTION: Tube is a nitrile blend, smooth and black. Cover is SBR blend, fabric impression, yellow, pin-pricked. Reinforcement is a two-ply synthetic fabric.

TEMPERATURE: -25°F (-32°C) to +200°F (+93°C)

BRANDING: Jason logo 4302 TEXTILE AIR WP (PSI) (BAR). Blue mylar longitudinal stripe.

APPLICATION: For tough applications in mines and quarries.

FEATURES:

- Oil mist resistant tube
- Bright yellow non-marking cover
- Medium high working pressure
- Weather and ozone resistant
- Excellent abrasion resistance

Part	1.	D.	о	.D.	Reinf.	-	W.P. 8° F	Vacuum @ 68°F	We	ight		mum Radius	Std. Length
Number	inch	mm	inch	mm	Plies	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4302-0050-050	1/2	12.70	0.91	23.11	2	400	27.58	n/a	0.32	0.48	6.00	152.40	50
4302-0075-050	3/4	19.05	1.18	29.97	2	400	27.58	n/a	0.40	0.60	7.50	190.00	50
4302-0100-050	1	25.40	1.46	37.08	2	400	27.58	n/a	0.54	0.80	10.00	254.00	50
4302-0150-050	1-1/2	38.10	2.05	52.07	2	400	27.58	n/a	0.92	1.37	15.00	280.00	50
4302-0200-050	2	50.80	2.64	67.06	2	400	27.58	n/a	1.37	2.04	20.00	508.00	50

DESIGN FACTOR: 3:1

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

WWW.JASONINDUSTRIAL.COM

28<mark>4</mark>

4305

TEXTILE REINFORCED AIR HOSE - 300 PSI

CONSTRUCTION: Tube is a nitrile blend, smooth and black. Cover is Nitrile/SBR, fabric impression, yellow, pin-pricked. Reinforcement is a two-ply synthetic fabric.

TEMPERATURE: -25°F (-32°C) to +200°F (+93°C)

BRANDING: Jason logo 4305 TEXTILE AIR WP (PSI) (BAR). Blue mylar longitudinal stripe.

DESIGN FACTOR: 3:1

APPLICATION: For rugged air line service in mining, quarries, construction, sandblasting, industrial air placement and equipment rental.

FEATURES:

- Oil mist resistant tube
- Bright yellow non-marking cover
- Weather and ozone resistant
- Excellent abrasion resistance

Part Number	I.	D.	0	.D.	Reinf. Plies		W.P. 8° F	Vacuum @ 68°F (in	We	eight		mum Radius	Std. Length
Number	inch	mm	inch	mm	Files	PSI	BAR	of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4305-0050-100	1/2	12.70	0.91	23.11	2	300	24.13	n/a	0.32	0.48	6.00	152.40	100
4305-0075-100	3/4	19.05	1.18	29.97	2	300	24.13	n/a	0.40	0.60	7.50	190.00	100
4305-0100-050	1	25.40	1.46	37.08	2	300	24.13	n/a	0.54	0.80	10.00	254.00	50
4305-0100-100	1	25.40	1.46	37.08	2	300	24.13	n/a	0.54	0.80	10.00	254.00	100
4305-0125-100	1-1/4	31.75	1.81	45.97	2	300	24.13	n/a	0.81	1.21	12.50	320.00	100
4305-0150-100	1-1/2	38.10	2.05	52.07	2	300	24.13	n/a	0.92	1.37	15.00	381.00	100
4305-0200-100	2	50.80	2.64	67.06	2	300	24.13	n/a	1.37	2.04	20.00	508.00	100
4305-0250-100	2-1/2	63.50	3.15	80.01	2	300	24.13	n/a	1.69	2.51	25.00	635.00	100
4305-0300-050	3	76.20	3.70	93.98	2	300	24.13	n/a	2.16	3.21	30.00	762.00	50
4305-0300-100	3	76.20	3.70	93.98	2	300	24.13	n/a	2.16	3.21	30.00	762.00	100

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

4306

MP300 MULTI-PURPOSE NBR NON-CONDUCTIVE

CI 4306 MP300 NUNCONDUCTIVE 3/4" ID 300 P\$1 NW. LIP

CONSTRUCTION: Nitrile ARPM Class A tube, Nitrile blend ARPM Class A cover, 4-spiral polyester yarn

TEMPERATURE: -20 °F (-29 °C) to 180 °F (+82 °C)

BRANDING: Jason logo 4306 MP300 NONCONDUCTIVE [ID] 300 PSI MAX WP Made in USA* [Date code] - white ink on black cover

DESIGN FACTOR: 4:1

APPLICATION: Wide variety of applications including metal processing, automotive, construction, and other applications where high level of nonconductivity required

FEATURES:

- Nonconductive, [Nonconductive rating] minimum of 1 megaohms per inch resistance when tested at 1000-volt D.C.
- 80% one piece reels, less scrap
- abrasion and ozone resistant
- flexible and easy to handle

Part Number	1.0) .	О	.D.	Reinf. Braids	-	W.P. 8° F	We	ight	Mini Bend I	mum Radius	Std. Length
Number	inch	mm	inch	mm	Braids	PSI	BAR	lb./ft.	KG/m	inch	mm	(ft.)
4306-0025-500	1/4"	6.35	0.62	15.75	4	300	20.7	0.16	0.24	1.50	38.10	500
4306-0031-500	5/16"	8.00	0.68	17.14	4	300	20.7	0.18	0.26	1.89	48.00	500
4306-0038-500	3/8"	9.53	0.71	18.03	4	300	20.7	0.18	0.27	2.25	57.15	500
4306-0050-500	1/2"	12.70	0.84	21.34	4	300	20.7	0.25	0.37	3.00	76.20	500
4306-0075-500	3/4"	19.05	1.15	29.21	4	300	20.7	0.42	0.62	4.50	114.30	500
4306-0100-500	1"	25.40	1.43	36.20	4	300	20.7	0.63	0.94	7.00	177.80	500

Other colors are optional MTO with minimum run quantities required.

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures in the Industrial Hose Guide for more information.

*Made in the USA of local and globally sourced materials.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

4308

ATLAS - MP500 NON-CONDUCTIVE MSHA - YELLOW

CONSTRUCTION: Nitrile ARPM Class A tube, Carboxylated Nitrile ARPM Class A cover, 4-spiral synthetic yarn

TEMPERATURE: -40 °F (-40 °C) to 212 °F (+100 °C)

BRANDING: Jason logo 4308 ATLAS MP500 NONCONDUCTIVE [ID] 500 PSI MAX WP MSHA 1C-114/1 Made in USA* [Date code] - black ink on yellow cover

DESIGN FACTOR: 4:1

APPLICATION: Wide variety of high pressure pneumatics and transfer of certain oil-based products and water, often found in construction, mining, industrial, and ag markets

FEATURES:

 MSHA 1C-114/1 Yellow Cover, Nonconductive, [Nonconductive rating] minimum of 1 megaohms per inch resistance when tested at 1000-volt D.C.

- 80% one piece reels, less scrap
- abrasion and ozone resistant
- flexible and easy to handle
- Uses Jason 12 Series Hose Couplings

Part	1.1	D.	o	.D.	Reinf.	-	W.P. 8° F	We	ight		mum Radius	Std. Length
Number	inch	mm	inch	mm	Braids	PSI	BAR	lb./ft.	KG/m	inch	mm	(ft.)
4308-0025-500	1/4"	6.35	0.63	15.88	4	500	34.5	0.14	0.21	1.50	38.10	500
4308-0038-500	3/8"	9.53	0.75	19.05	4	500	34.5	0.21	0.31	2.25	57.15	500
4308-0050-500	1/2"	12.70	0.91	23.02	4	500	34.5	0.24	0.36	3.00	76.20	500
4308-0062-500	5/8"	15.88	0.98	24.89	4	500	34.5	0.26	0.39	3.75	95.25	500
4308-0075-500	3/4"	19.05	1.19	30.16	4	500	34.5	0.36	0.54	4.50	114.30	500
4308-0100-500	1"	25.40	1.50	38.10	4	500	34.5	0.51	0.76	7.00	177.80	500
4308-0125-400	1-1/4"	31.75	1.75	44.45	4	500	34.5	0.66	0.98	8.75	222.25	400

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures in the Industrial Hose Guide for more information.

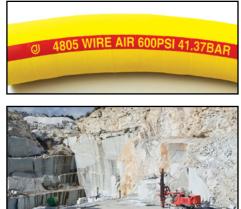
We disclaim any liability for use of our products in applications other than which they are designed.

^{*}Made in the USA of local and globally sourced materials.

All sizes may not be stocked in all locations. Check with customer service for availability.

4805

WIRE REINFORCED AIR HOSE



ARPM Class B, smooth and black.

Cover is SBR blend, yellow, fabric

Reinforcement is two spiral wires.

impression and pin-pricked.

APPLICATION: For heavy duty air supply in mining, quarries, construction, industrial air placement, sandblasting and heavy duty equipment rental.

Oil mist resistant tube with high working pressure

FEATURES:

TEMPERATURE: -25°F (-32°C) to +200°F (+93°C) BRANDING: Jason logo 4805 WIRE AIR WP (PSI) (BAR)

CONSTRUCTION: Tube is a NR/SBR blend,

 Bright yellow non-marking cover • Heavy duty cover makes this a durable hose

DESIGN FACTOR:	4:1	(1/2" thru 3" I.D.)
	3:1	(4" thru 6" I.D.)

Part	I.	.D.	0	.D.	Reinf.	Max. \ 68		Vacuum @ 68°F	Wei	ght		um Bend adius	Std. Length.
Number	inch	mm	inch	mm	Spirals	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4805-0050-050	1/2	12.70	0.91	23.11	2	600	41.37	n/a	0.36	0.54	5.50	140.00	50
4805-0050-100	1/2	12.70	0.91	23.11	2	600	41.37	n/a	0.36	0.54	5.50	140.00	100
4805-0075-050	3/4	19.05	1.22	30.99	2	600	41.37	n/a	0.60	0.89	8.30	210.00	50
4805-0075-100	3/4	19.05	1.22	30.99	2	600	41.37	n/a	0.60	0.89	8.30	210.00	100
4805-0100-050	1	25.40	1.49	37.85	2	600	41.37	n/a	0.80	1.19	11.00	280.00	50
4805-0100-100	1	25.40	1.49	37.85	2	600	41.37	n/a	0.80	1.19	11.00	280.00	100
4805-0100-200	1	25.40	1.49	37.85	2	600	41.37	n/a	0.80	1.19	11.00	280.00	200
4805-0125-050	1-1/4	31.75	1.81	45.97	2	600	41.37	n/a	1.05	1.56	13.80	350.00	50
4805-0125-100	1-1/4	31.75	1.81	45.97	2	600	41.37	n/a	1.05	1.56	13.80	350.00	100
4805-0150-050	1-1/2	38.10	2.04	51.82	2	600	41.37	n/a	1.24	1.85	16.50	420.00	50
4805-0150-100	1-1/2	38.10	2.04	51.82	2	600	41.37	n/a	1.24	1.85	16.50	420.00	100
4805-0200-050	2	50.80	2.60	66.04	2	600	41.37	n/a	1.80	2.68	22.00	560.00	50
4805-0200-100	2	50.8	2.60	66.04	2	600	41.37	n/a	1.80	2.68	22.00	560.00	100
4805-0200-200	2	50.80	2.60	66.04	2	600	41.37	n/a	1.80	2.68	22.00	560.00	200
4805-0250-050	2-1/2	63.50	3.15	80.01	2	600	41.37	n/a	2.40	3.57	27.50	700.00	50
4805-0250-100	2-1/2	63.50	3.15	80.01	2	600	41.37	n/a	2.40	3.57	27.50	700.00	100
4805-0300-050	3	76.20	3.70	93.98	2	600	41.37	n/a	3.22	4.79	33.10	840.00	50
4805-0300-100	3	76.20	3.70	93.98	2	600	41.37	n/a	3.22	4.79	33.10	840.00	100
4805-0400-050	4	101.60	4.88	123.95	2	600	41.37	n/a	4.70	6.99	44.10	1120.00	50
4805-0400-100	4	101.60	4.88	123.95	2	600	41.37	n/a	4.70	6.99	44.10	1120.00	100
4805-0600-050	6	152.40	6.89	175.01	2	600	41.37	n/a	6.82	10.14	63.00	1600.200	50
4805-0600-100	6	152.40	6.89	175.01	2	600	41.37	n/a	6.82	10.14	63.00	1600.200	100

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability. disclaim any liability for use of our products in applications other than which they are designed.

4806

WIRE BRAID AIR HOSE - WIRE REINFORCED

J

CONSTRUCTION: Tube is nitrile, ARPM Class B, smooth and black. Cover is NBR/PVC, fabric impression and pin-pricked. Reinforcement is one braid of wire.

TEMPERATURE: -40°F (-40°C) to +212°F (+100°C)

BRANDING: Jason logo 4806 WIRE BRAID AIR WP (PSI) (BAR)

STANDARD LENGTHS: 50 ft. and 100 ft., all sizes.

DESIGN FACTOR: 4:1

Approved for use with Jason 12 Series hose couplings. See Hydraulic Hose guide for more information.

APPLICATION: For heavy duty air supply in mining, guarries, construction, industrial air placement, sand-

4806 WIR

FEATURES:

- Oil mist resistant tube
- Bright yellow non-marking cover

blasting and heavy duty equipment rental.

- High working pressure
- Heavy duty cover and wire braid reinforcement for maximum durability
- Uses Jason 12-Series Couplings from 3/4" to 2"

Part	1.1	D.	0.	D.	Reinf.		. W.P. 8° F	Vacuum @ 68°F	We	ight		imum Radius		dard gths
Number	inch	mm	inch	mm	Braid	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	feet	meter
4806-0075-050	3/4	19.05	1.24	31.60	1	600	41.37	n/a	0.79	0.53	8.30	210.00	50	15.2
4806-0075-100	3/4	19.05	1.24	31.60	1	600	41.37	n/a	0.79	0.53	8.30	210.00	100	30.5
4806-0100-050	1	25.40	1.50	38.10	1	600	41.37	n/a	1.04	0.70	11.0	280.0	50	15.2
4806-0100-100	1	25.40	1.50	38.10	1	600	41.37	n/a	1.04	0.70	11.0	280.0	100	30.5
4806-0150-050	1-1/2	38.10	2.06	52.20	1	600	41.37	n/a	1.75	1.17	16.5	420.0	50	15.2
4806-0150-100	1/1/2	38.10	2.06	52.20	1	600	41.37	n/a	1.75	1.17	16.5	420.0	100	30.5
4806-0200-050	2	50.80	2.67	67.90	1	600	41.37	n/a	2.33	1.56	22.00	560.00	50	15.2
4806-0200-100	2	50.80	2.67	67.90	1	600	41.37	n/a	2.33	1.56	22.00	560.00	100	30.5
4806-0300-050	3	76.20	3.78	96.00	1	600	41.37	n/a	4.08	2.74	33.10	840.00	50	15.2
4806-0300-100	3	76.20	3.78	96.00	1	600	41.37	n/a	4.08	2.74	33.10	840.00	100	30.5

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

4807

HI-TEMP AIR HOSE - WIRE REINFORCED

CONSTRUCTION: Tube is a hydraulic oil mist resistant, high heat synthetic rubber. Cover is EPDM, yellow, pin-pricked. Reinforcement is a two-spiral wire.

TEMPERATURE: -40°F (-40°C) to +275°F (+135°C)

BRANDING: Jason logo 4807 HIGH HEAT WIRE AIR 275°F (+135°C) 600 PSI/41.4 BAR. Green mylar longitudinal stripe.

APPLICATION: For heavy duty air supply where high temperature is required. For use with high-temperature compressors without an after-cooler, mining, guarries, construction, industrial air placement, sand blasting and heavy duty equipment.

FEATURES:

- Hydraulic oil resistant tube
- Bright yellow non-marking cover
- High working pressure
- Extreme heat resistance
- Abrasion and ozone resistant

Part	I.	D.	0	.D.	Reinf.	Max. @ 6	W.P. 8° F	Vacuum @ 68°F	We	eight		mum Radius	Std. Length.
Number	inch	mm	inch	mm	Spirals	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4807-0075-050	3/4	19.05	1.42	36.00	2	600	41.37	n/a	0.60	0.89	8.30	210.00	50
4807-0075-100	3/4	19.05	1.42	36.00	2	600	41.37	n/a	0.60	0.89	8.30	210.00	100
4807-0100-050	1	25.40	1.93	49.00	2	600	41.37	n/a	0.80	1.19	11.00	280.00	50
4807-0100-100	1	25.40	1.93	49.00	2	600	41.37	n/a	0.80	1.19	11.00	280.00	100
4807-0200-050	2	50.80	2.48	63.00	2	600	41.37	n/a	1.80	2.68	22.00	560.00	50
4807-0200-100	2	50.80	2.48	63.00	2	600	41.37	n/a	1.80	2.68	22.00	560.00	100
4807-0300-050	3	76.20	3.50	89.00	2	600	41.37	n/a	3,22	4.79	33.10	840.00	50
4807-0300-100	3	76.20	3.50	89.00	2	600	41.37	n/a	3.22	4.79	33.10	840.00	100

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

- All sizes may not be stocked in all locations. Check with customer service for availability.
- e disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

WWW.JASONINDUSTRIAL.COM

DESIGN FACTOR: 3:1

FOR IN-PLANT OR TANK TRUCK USE TO TRANSFER CHEMICALS & SOLVENTS

SERIES		PAGE
4430	Cross-Linked Polyethylene Suction Hose	36
4433	UHMWPE Chemical Suction Hose	37

Hoses are constantly being upgraded. Jason Industrial reserves the right to make changes in construction without prior notice.

We disclaim any liability for use of our products in applications other than which they are designed.

CHEMICAL HOSE

CROSS-LINKED POLYETHYLENE SUCTION HOSE

CONSTRUCTION: Tube is clear, smooth cross-linked polyethylene (XLPE). Cover is EPDM, green with fabric impression. Reinforcement is two plies of synthetic fabric with a wire helix and a copper static wire.

TEMPERATURE: -40°F (-40°C) to +194°F (+90°C)

BRANDING: Jason logo 4430 XLPE ACID CHEMICAL ID WP (PSI) (BAR). Blue mylar longitudinal stripe.

APPLICATION: For in-plant or tank truck use to transfer chemicals and solvents.

FEATURES:

- · Versatile, it handles a variety of chemicals
- Handles 90% of the chemical/acid applications
- Reduces the need to stock several types of chemical hoses
- EPDM cover is heat, weather & abrasion resistant
- All sizes are full vacuum

Part Number	I.D.		O.D.		Reinf.	Max. W.P. @ 68° F		Vacuum @ 68°F	Weight		Minimum Bend Radius		Std. Length
	inch	mm	inch	mm	Plies	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4430-0075-100	3/4	19.05	1.19	30.23	2	200	13.79	29.9	0.36	0.54	6.00	152.40	100
4430-0100-100	1	25.40	1.50	38.10	2	200	13.79	29.9	0.49	0.73	6.50	165.10	100
4430-0125-100	1-1/4	31.75	1.75	44.45	2	200	13.79	29.9	0.55	0.82	9.00	228.60	100
4430-0150-100	1-1/2	38.10	2.09	53.09	2	200	13.79	29.9	0.69	1.03	10.00	254.00	100
4430-0200-100	2	50.80	2.61	66.29	2	200	13.79	29.9	0.98	1.46	12.00	304.80	100
4430-0250-100	2-1/2	63.50	3.19	81.03	2	150	10.35	29.9	1.35	2.01	15.00	381.00	100
4430-0300-100	3	76.20	3.75	95.25	2	150	10.35	29.9	1.90	2.83	16.00	406.40	100
4430-0400-100	4	101.60	4.88	123.95	2	150	10.35	29.9	2.57	3.82	18.00	457.20	100

DESIGN FACTOR: 3:1

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

- All sizes may not be stocked in all locations. Check with customer service for availability.
- We disclaim any liability for use of our products in applications other than which they are designed.

🔪 WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

36

CHEMICAL HOSE

4433

UHMWPE CHEMICAL SUCTION HOSE

CONSTRUCTION: Tube is an Ultra-High Molecular Weight Polyethylene (UHMWPE). Cover is EPDM, blue and corrugated. Reinforcement is a two-ply synthetic fabric with a wire helix.

TEMPERATURE: -40°F (-40°C) to +194°F (+90°C)

BRANDING: Jason logo 4433 UHMWPE ACID CHEMICAL ID WP (PSI) (BAR). Orange mylar longitudinal stripe.

APPLICATION: For in-plant or tank truck use to transfer chemicals and solvents.

FEATURES:

- Corrugations make the hose flexible
- Handles 98% of the chemical/acid applications
- Reduces the need to stock several types of
- EPDM cover is heat, weather & abrasion resistant
- All sizes are full vacuum

chemical hoses

Part	I.	D.	0	.D.	Reinf. Plies	-	W.P. 8° F	Vacuum @ 68°F	We	eight		mum Radius	Std. Length.
Number	inch	mm	inch	mm	Plies	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4433-0075-100	3/4	19.05	1.14	28.96	2	200	13.79	29.9	0.38	0.57	6.00	152.40	100
4433-0100-100	1	25.40	1.46	37.08	2	200	13.79	29.9	0.50	0.74	6.50	165.10	100
4433-0125-100	1-1/4	31.75	1.77	44.96	2	200	13.79	29.9	0.58	0.86	9.00	228.60	100
4433-0150-100	1-1/2	38.10	2.05	52.07	2	200	13.79	29.9	0.71	1.06	10.00	254.00	100
4433-0200-100	2	50.80	2.64	67.06	2	200	13.79	29.9	1.01	1.50	12.00	304.80	100
4433-0250-100	2-1/2	63.50	3.15	80.01	2	200	13.79	29.9	1.46	2.17	15.00	381.00	100
4433-0300-100	3	76.20	3.86	98.04	2	200	13.79	29.9	1.97	2.93	16.00	406.40	100
4433-0400-100	4	101.60	4.72	119.89	2	150	10.35	29.9	2.60	3.87	18.00	457.20	100

DESIGN FACTOR: 3:1

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGs.ca.gov

FOR IN-PLANT OR TANK TRUCK USE TO TRANSFER FOOD GRADE PRODUCTS

SERIES PAGE 3000 Polyurethane FDA USDA Material Handling Hose - $S\Omega$ 39 3010 HD PVC FDA USDA 3-A Liquid Food Suction Hose 40 3012 41 PVC FDA 3-A Liquid Suction Hose - SΩ 4460 **FDA Bulk Food Suction Hose** 42 4465 **FDA Liquid Food Suction Hose** 43 4511 44 **FDA Braided PVC Hose** 4600 **FDA Spring Wire PVC Hose** 45

Hoses are constantly being upgraded. Jason Industrial reserves the right to make changes in construction without prior notice.

3000 POLYURETHANE FDA USDA MATERIAL HANDLING HOSE - S Ω

CONSTRUCTION: Polyurethane tube with high tensile strength polyester yarn reinforcement. Clockwise PVC helix with SΩ ground wire.

TEMPERATURE: -40°F (-40°C) to +140°F (+60°C)

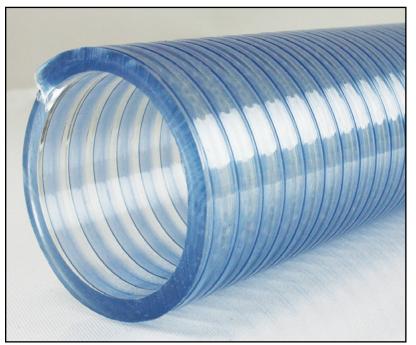
APPLICATION: Heavy duty food grade material handling, railcar unloading, abrasive suction and transfer.

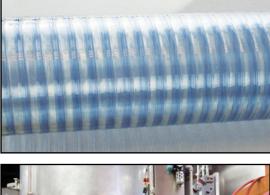
FEATURES:

- FDA compliant material for use in meat & poultry plants
- USDA compliant material for use in meat & poultry plants
- Clear visual flow and higher transfer pressures
- Safety Ohm (SΩ) ground wire embedded into the hose wall to help prevent the build-up of static electricity.
 SΩ wire must be secured to ground to dissipate static electricity.
- -40°F cold weather resistance with sub-zero flexibility
- Easy to drag with "Go-Glide" external clockwise PVC helix
- Vacuum up to 29" of Hg

Part		I.D.	0.	.D.	Reinf.		x W.P. 68°F	Vacuum @ 68°F (in	We	ight		mum Radius	Std. Length
Number	in.	mm	in.	mm	Braids	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
3000-0300-100	3	76.20	3.80	96.52	1	70	4.83	29.0	1.20	1.79	4.00	101.60	100
3000-0400-100	4	101.60	4.85	123.19	1	65	4.48	29.0	1.60	2.38	6.00	152.40	100
3000-0500-020	5	127.00	5.80	147.32	1	45	3.10	29.0	2.46	3.66	10.00	254.00	20
3000-0500-050	5	127.00	5.80	147.32	1	45	3.10	29.0	2.46	3.66	10.00	254.00	50
3000-0500-100	5	127.00	5.80	147.32	1	45	3.10	29.0	2.46	3.66	10.00	254.00	100
3000-0600-020	6	152.40	6.92	175.77	1	40	2.76	29.0	2.86	4.26	12.00	304.80	20
3000-0600-050	6	152.40	6.92	175.77	1	40	2.76	29.0	2.86	4.26	12.00	304.80	50
3000-0600-100	6	152.40	6.92	175.77	1	40	2.76	29.0	2.86	4.26	12.00	304.80	100

DESIGN FACTOR: 3:1


Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.


All sizes may not be stocked in all locations. Check with customer service for availability.

3010

HD PVC FDA USDA 3-A LIQUID FOOD SUCTION HOSE

CONSTRUCTION: PVC tube with a sturdy clockwise PVC helix.

TEMPERATURE: -5°F (-23°C) to +140°F (+60°C)

APPLICATION: Transfer of food grade liquids, such as juices, wine, beer and potable water and dairy products.

FEATURES:

- FDA compliant material for use in meat & poultry plants
- USDA compliant for use in meat and poultry plants
- Meets 3-A sanitary standards, which includes processing dairy products
- Clear visual flow
- Vacuum up to 29" of Hg

Part	I	.D.	0	.D.	Reinf.		. W.P. 8° F	Vacuum @ 68°F	We	ight		mum Radius	Std. Length.
Number	inch	mm	inch	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
3010-0100-100	1	25.40	1.24	31.50	PVC Helix	71	4.90	29.9	0.26	0.39	3.00	76.20	100
3010-0125-100	1-1/4	31.75	1.54	39.12	PVC Helix	64	4.41	29.9	0.34	0.51	4.00	101.60	100
3010-0150-100	1-1/2	38.10	1.82	46.23	PVC Helix	57	3.93	29.9	0.44	0.65	6.00	152.40	100
3010-0200-100	2	50.80	2.39	60.71	PVC Helix	57	3.93	29.9	0.74	1.10	8.00	203.20	100
3010-0250-100	2-1/2	63.50	2.93	74.42	PVC Helix	57	3.93	29.9	1.01	1.50	10.00	254.00	100
3010-0300-100	3	76.20	3.43	87.12	PVC Helix	57	3.93	29.9	1.21	1.80	12.00	304.80	100
3010-0400-100	4	101.60	4.53	115.06	PVC Helix	43	2.97	29.9	2.02	3.01	15.00	381.00	100

DESIGN FACTOR: 3:1

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

FOOD HOSE

3012

PVC FDA 3-A LIQUID SUCTION HOSE

CONSTRUCTION: Non-toxic food grade PVC helix (white) and PVC tube. Reinforcement is one synthetic braid.

TEMPERATURE: -50°F (-46°C) to +150°F (+66°C)

BRANDING: None

DESIGN FACTOR: 3:1

APPLICATION: Food handling and heavy duty suction and discharge applications. Also for processing wine, beer, food paste, dairy and syrup.

FEATURES:

- Meets FDA, USDA and 3-A sanitary standards
- Clear, visual flow
- Easy to drag with "Go-Glide" external clockwise PVC helix
- Vacuum rating up to 29" of HG
- -50°F cold weather resistant and still flexible

Part		D.	0	.D.	Reinf.	Max. @ 68		Vacuum @ 68°F	Wei	ight		mum Radius
Number	inch	mm	inch	mm	Braids	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm
3012-0150-100	1-1/2	38.10	2.03	51.56	1	110	7.58	29.0	0.47	0.70	2.50	63.50
3012-0200-100	2	50.80	2.60	66.04	1	100	6.89	29.0	0.69	1.02	4.00	101.60
3012-0300-100	3	76.20	3.70	93.98	1	100	6.89	28.0	1.13	1.68	6.00	152.40
3012-0400-100	4	101.60	4.78	121.41	1	80	5.51	28.0	1.74	2.58	7.00	177.80
3012-0500-100	5	127.00	6.04	153.42	1	70	4.83	28.0	2.99	4.44	9.00	228.60

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

Std. Length. (ft.)

100

100

100

4460

FDA BULK FOOD SUCTION HOSE

CONSTRUCTION: Tube is white natural rubber (NR) blend, 3/16" thick, FDA Grade. Cover is SBR/EPDM blend, gray with flat corrugations. Two-ply reinforcement with a steel wire helix. TEMPERATURE: -40°F (-40°C) to +158°F (+70°C)

BRANDING: Jason logo 4460 FDA ID 3/16" Tube BULK FOOD SUCTION WP (PSI) (BAR). Orange mylar longitudinal stripe.

DESIGN FACTOR: 3:1

APPLICATION: For suction, pneumatic or gravity transfer of flour, sugar, syrup or edible grains.

FEATURES:

- Corrugations make the hose extremely flexible
- FDA Grade tube
- Cover is weather and abrasion resistant
- All sizes are full vacuum

This hose must be grounded during assembly. Please see page 16 for proper instructions on grounding using the helix wire.

Part	1.0	D.	0	.D.	Reinf.	-	x W.P. 68°F	Vacuum @ 68°F	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4460-0100-100	1	25.40	1.49	37.85	2	150	10.35	29.0	0.69	1.03	4.50	114.30	100
4460-0150-100	1-1/2	38.10	2.20	56.00	2	150	10.35	29.0	0.98	1.46	5.00	127.00	100
4460-0200-100	2	50.80	2.72	69.00	2	150	10.35	29.0	1.37	2.04	6.00	152.40	100
4460-0200-200	2	50.80	2.72	69.00	2	150	10.35	29.0	1.37	2.04	6.00	152.40	200
4460-0250-100	2-1/2	63.50	3.23	82.00	2	150	10.35	29.0	1.67	2.49	8.00	203.20	100
4460-0300-100	3	76.20	3.82	97.00	2	150	10.35	29.0	2.14	3.18	10.00	254.00	100
4460-0350-100	3-1/2	88.90	4.41	112.00	2	150	10.35	29.0	2.60	3.87	12.00	304.80	100
4460-0400-100	4	101.60	4.88	124.00	2	150	10.35	29.0	3.14	4.67	20.00	508.00	100
4460-0450-060	4-1/2	114.30	5.39	137.00	2	150	10.35	29.0	3.94	5.86	22.00	558.00	60
4460-0500-100	5	127.00	5.94	151.00	2	150	10.35	29.0	4.67	6.95	24.00	609.60	100
4460-0600-020	6	152.40	6.89	175.00	2	150	10.35	29.0	5.98	8.90	26.00	660.40	20
4460-0600-100	6	152.40	6.89	175.00	2	150	10.35	29.0	5.98	8.90	26.00	660.40	100
4460-0662-020	6-5/8	168.28	7.52	191.01	2	150	10.35	29.0	7.31	10.88	29.00	736.60	20
4460-0688-020	6-7/8	174.63	7.80	198.13	2	150	10.35	29.0	7.81	11.58	30.00	762.60	20
4460-0800-020	8	203.20	8.94	227.00	2	150	10.35	29.0	9.36	13.93	32.00	812.80	20
4460-0862-020	8-5/8	219.08	9.33	236.98	2	125	8.62	29.0	9.64	14.35	36.00	914.40	20
4460-1000-020	10	254.00	10.83	275.08	2	125	8.62	29.0	11.57	17.22	44.00	1117.60	20
4460-1200-020	12	304.80	12.83	325.88	2	100	6.89	29.0	15.27	22.72	60.00	1524.00	20
4460-1400-020	14	355.60	14.76	374.90	2	100	6.89	29.0	18.41	27.40	72.00	1828.80	20

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

🔥 WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

4465

FDA LIQUID FOOD SUCTION HOSE

CONSTRUCTION: Tube is white NBR/NR blend, FDA Grade. Cover is NBR blend, corrugated and white. Two-ply reinforcement with a steel wire helix.

TEMPERATURE: -25°F (-32°C) to +194°F (+90°C)

BRANDING: Jason logo 4465 FDA LIQUID FOOD SUCTION WP 150 PSI 10.35 BAR. Blue mylar longitudinal stripe. **APPLICATION:** For suction and discharge of liquid food products, including oily edibles and beer.

FEATURES:

- Corrugations make the hose extremely flexible
- FDA Grade tube
- Cover is weather and abrasion resistant
- All sizes are full vacuum
- Capable of handling a wide variety of food products

DESIGN FACTOR: 3:1

Part	I.D		0	.D.	Reinf. Plies		W.P. 8° F	Vacuum @ 68°F	We	ight		mum Radius	Std. Length
Number	inch	mm	inch	mm	Plies	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4465-0075-100	3/4	19.05	1.10	28.00	2	150	10.35	29.0	0.34	0.51	2.40	60.00	100
4465-0100-100	1	25.40	1.38	35.00	2	150	10.35	29.0	0.45	0.67	3.10	80.00	100
4465-0150-100	1-1/2	38.10	2.05	52.07	2	150	10.35	29.0	1.06	1.58	4.00	101.60	100
4465-0200-100	2	50.80	2.56	65.02	2	150	10.35	29.0	1.35	2.01	5.00	127.00	100
4465-0300-100	3	76.20	3.56	90.42	2	150	10.35	29.0	2.08	3.10	6.00	152.40	100
4465-0400-100	4	101.60	4.69	119.13	2	150	10.35	29.0	3.21	4.79	8.00	203.20	100

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

MARNING: This product can expose you to chemicals including titanium dioxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov FOOD HOSE

4511

FDA BRAIDED PVC HOSE - PHTHALATE FREE

CONSTRUCTION: Tube and cover are crystal clear, non-toxic FDA Grade Phthalate free. Reinforcement one braid of synthetic material.

TEMPERATURE: -14°F (-26°C) to +140°F (+60°C)

BRANDING: Jason logo ID (INCH) WP (PSI) FDA NON-TOXIC, PHTHALATE FREE, Country of Origin.

APPLICATION: Food and beverage dispensing, potable water, air, breathing lines, packaging and equipment, lube lines and other visual flow applications.

FEATURES:

- One piece coils
- FDA Grade tube and cover
- Resists chemical, ozone and weathering
- Capable of handling a wide variety of food products

Part Number	I.D		0	.D.	Reinf. Braids		. W.P. 8° F	Vacuum @ 68°F	We	ight	Minir Bend F		Std. Length.
Number	inch	mm	inch	mm	Braids	PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4511-0251	1/4	6.35	0.45	11.43	1	250	17.24	n/a	0.04	0.06	n/a	n/a	300
4511-0311	5/16	7.94	0.47	11.94	1	250	17.24	n/a	0.05	0.07	n/a	n/a	300
4511-0381	3/8	9.53	0.55	13.97	1	200	13.79	n/a	0.07	0.10	n/a	n/a	300
4511-0501	1/2	12.70	0.69	17.53	1	150	10.35	n/a	0.10	0.15	n/a	n/a	300
4511-0631	5/8	15.88	0.82	20.83	1	150	10.35	n/a	0.12	0.18	n/a	n/a	300
4511-0751	3/4	19.05	0.99	25.15	1	150	10.35	n/a	0.18	0.27	n/a	n/a	300
4511-1001	1	25.40	1.28	32.51	1	125	8.62	n/a	0.27	0.40	n/a	n/a	300
4511-1251	1-1/4	31.75	1.61	40.89	1	100	6.89	n/a	0.44	0.65	n/a	n/a	100
4511-1501	1-1/2	38.10	1.85	46.99	1	70	4.83	n/a	0.51	0.76	n/a	n/a	100
4511-2001	2	50.80	2.39	60.71	1	60	4.14	n/a	0.74	1.10	n/a	n/a	100

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

DESIGN FACTOR: 3:1

FDA SPRING WIRE PVC HOSE

4600

CONSTRUCTION: Tube and cover are crystal clear, PVC, FDA Grade. Reinforcement is electro-galvanized spring steel wire.

TEMPERATURE: -14°F (-26°C) to +140°F (+60°C)

APPLICATION: Food and beverage dispensing, air, water, coolant, car wash, deionized water systems and other clear flow applications. **FEATURES:**

- Clear food grade PVC allows for visual flow inspection
- Spring steel wire prevents kinking and collapsing
- All sizes are full vacuum

Part	I	.D.	c).D.	Reinf.	-	W.P. 8° F	Vacuum @ 68°F	We	ight		mum Radius	Std. Length.
Number	inch	mm	inch	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4600-0380	3/8	9.53	0.63	16.00	Wire Spring	100	6.89	27.5	0.10	0.15	0.80	19.10	100
4600-0500	1/2	12.70	0.71	18.03	Wire Spring	100	6.89	27.5	0.13	0.19	1.00	25.40	100
4600-0630	5/8	15.88	0.90	22.86	Wire Spring	100	6.89	27.5	0.17	0.25	1.20	30.00	100
4600-0750	3/4	19.05	1.06	26.92	Wire Spring	100	6.89	27.5	0.24	0.36	1.30	34.00	100
4600-1000	1	25.40	1.31	33.27	Wire Spring	75	5.17	27.5	0.34	0.51	1.70	41.90	100
4600-1250	1-1/4	31.75	1.61	40.89	Wire Spring	75	5.17	24.6	0.50	0.74	2.00	50.80	50
4600-1500	1-1/2	38.10	1.85	46.99	Wire Spring	50	3.45	24.6	0.55	0.82	2.50	63.50	50
4600-2000	2	50.80	2.36	59.94	Wire Spring	50	3.45	23.2	0.84	1.25	3.20	82.00	50
4600-2500	2-1/2	63.50	2.97	75.44	Wire Spring	50	3.45	23.2	1.21	1.80	5.50	139.70	50
4600-3000	3	76.20	3.51	89.15	Wire Spring	50	3.45	20.3	1.48	2.20	6.50	165.10	50
4600-3500	3-1/2	88.90	4.09	103.89	Wire Spring	50	3.45	20.3	1.95	2.90	7.50	190.50	50
4600-4000	4	101.60	4.57	116.08	Wire Spring	50	3.45	20.3	2.18	3.24	8.50	215.90	50

DESIGN FACTOR: 3:1

BRANDING: None

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including DINP, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

FOR THE TRANSFER OF BULK MATERIAL, ABRASIVES, CONCRETE & CEMENT

SERIES		PAGE
3020	HD Polyurethane Lined, PVC Material Handling Hose	47
3021	Polyurethane Material Handling and Duct Hose	48
3022	Medium Duty Polyurethane Lined Material Handling Hose	49
3030	PVC Mulch Resurfacing Hose	50
3035	Abrasion Resistant SBR Material Handling Hose	51
4310	Gunite Hose	52
4312	2-Ply Sandblast Hose	53
4313	Lightweight Sandblast Hose	54
4314	4-Ply Sandblast Hose	55
4322	1/8" Tube Sand & Dry Cement, Powder Discharge Hose	56
4323	3/16" Tube Sand & Dry Cement, Powder Discharge Hose	56
4324	1/4" Tube Sand & Dry Cement, Powder Discharge Hose	56
4370	Concrete Placement Hose - 800 PSI	57
4373 NEW !	Concrete Placement Hose - 1275 PSI	58
4375	Concrete Placement Hose - 1300 PSI	59
4425	Hot Air Blower Hose	60
4428	Plaster and Grout Hose	61
4470	Bulk Material Suction Hose	62

Hoses are constantly being upgraded. Jason Industrial reserves the right to make changes in construction without prior notice.

CONSTRUCTION: Polyurethane abrasion resistant liner with a PVC cover and a sturdy clockwise PVC helix.

TEMPERATURE: -40°F (-40°C) to +140°F (+60°C)

APPLICATION: For vacuum and transfer of abrasive crushed rock, gravel, sand or dry fertilizers, fly ash and also used for shot blast recovery.

FEATURES:

- Abrasion resistant PU liner
- Static dissipating cover compound
- -40°F cold weather resistance
- Sub-zero flexibility
- Easy to drag with "Go-Glide" external clockwise PVC helix

Part Number	I.	D.	0	.D.	Reinf.	-	W.P. 8° F	Vacuum @ 68°F	Wei	ght		mum Radius	Std. Length
Number	inch	mm	inch	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
3020-0150-100	1-1/2	38.10	1.85	46.99	PVC Helix	50	3.45	29.0	0.42	0.63	2.00	50.80	100
3020-0200-100	2	50.80	2.40	60.96	PVC Helix	40	2.76	29.0	0.59	0.88	3.00	76.20	100
3020-0250-100	2-1/2	63.50	3.09	78.49	PVC Helix	40	2.76	29.0	0.82	1.22	3.00	76.20	100
3020-0300-100	3	76.20	3.64	92.46	PVC Helix	40	2.76	29.0	1.18	1.76	4.00	101.60	100
3020-0400-100	4	101.60	4.76	120.90	PVC Helix	35	2.41	29.0	1.94	2.89	6.00	152.40	100
3020-0600-020	6	152.40	6.80	172.72	PVC Helix	30	2.07	28.0	3.50	5.21	12.00	304.80	20
3020-0600-050	6	152.40	6.80	172.72	PVC Helix	30	2.07	28.0	3.50	5.21	12.00	304.80	50
3020-0600-100	6	152.40	6.80	172.72	PVC Helix	30	2.07	28.0	3.50	5.21	12.00	304.80	100
3020-0800-020	8	203.20	9.16	232.66	PVC Helix	30	2.07	28.0	5.90	8.78	18.00	457.20	20
3020-0800-050	8	203.20	9.16	232.66	PVC Helix	30	2.07	28.0	5.90	8.78	18.00	457.20	50

DESIGN FACTOR: 3:1

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

JASON®

RIAL

3021

POLYURETHANE MATERIAL HANDLING AND DUCT HOSE

CONSTRUCTION: Polyurethane abrasion resistant tube with sturdy clockwise PVC helix.

TEMPERATURE: -40°F (-40°C) to +140°F (+60°C)

APPLICATION: Insulation blowing, fume removal, ducting, ventilation and dust collection.

FEATURES:

- Abrasion resistant PU
- Clear visual flow
- -40°F cold weather resistance
- Sub-zero flexibility
- Easy to drag with "Go-Glide" external clockwise PVC helix

Part Number	I.	D.	C).D.	Reinf.		W.P. 8° F	Vacuum @ 68°F	We	ight		mum Radius	Std. Length.
Number	inch	mm	inch	mm		PSI BAR		(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
3021-0150-100	1-1/2	38.10	1.82	46.23	PVC Helix	20	1.38	15.0	0.23	0.34	0.70	17.80	100
3021-0200-100	2	50.80	2.40	60.96	PVC Helix	15	1.03	12.0	0.32	0.48	1.37	34.80	100
3021-0250-100	2-1/2	63.50	2.90	73.66	PVC Helix	10	0.69	10.0	0.39	0.58	1.37	34.80	100
3021-0300-100	3	76.20	3.43	87.12	PVC Helix	10	0.69	10.0	0.55	0.82	2.25	57.20	100
3021-0400-100	4	101.60	4.48	113.79	PVC Helix	8	0.55	8.0	0.77	1.15	3.00	76.20	100

DESIGN FACTOR: 3:1

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

CONSTRUCTION: Medium duty abrasion resistant polyurethane liner with static dissipating PVC cover and sturdy clockwise PVC helix.

TEMPERATURE: -40°F (-40°C) to +150°F (+65°C)

APPLICATION: Dust collection, dry fertilizer, plastic pellets or any dry medium abrasive requirements.

FEATURES:

- Abrasion resistant PU tube
- Clear visual flow
- -40°F cold weather resistance
- Sub-zero flexibility
- Easy to drag with "Go-Glide" external clockwise PVC helix
- Static dissipating PVC cover compound

DESIGN FACTOR: 3:1

3022

Part	1.1	D.	0	.D.	Reinf.		W.P. 8° F	Vacuum @ 68°F	We	ight		imum Radius	Std. Lgth.
Number	inch	mm	inch	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
3022-0150-100	1-1/2	38.10	1.91	48.51	PVC Helix	30	2.07	24.0	0.29	0.43	1.37	34.80	100
3022-0200-100	2	50.80	2.46	62.48	PVC Helix	25	1.72	22.0	0.40	0.60	2.50	63.50	100
3022-0250-100	2-1/2	63.50	2.90	73.66	PVC Helix	20	1.38	19.0	0.54	0.80	2.50	63.50	100
3022-0300-100	3	76.20	3.53	89.66	PVC Helix	20	1.38	18.0	0.68	1.01	4.00	101.60	100
3022-0400-100	4	101.60	4.57	116.08	PVC Helix	15	1.03	13.0	1.01	1.50	6.00	152.40	100

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

'RIAL

3030

PVC MULCH RESURFACING HOSE

CONSTRUCTION: Abrasion resistant PVC tube with sturdy clockwise PVC helix.

TEMPERATURE: -40°F (-40°C) to +140°F (+60°C)

APPLICATION: Standard duty material handling hose to dispense mulch, bark, wood chips or for resurfacing and landscaping.

FEATURES:

- Abrasion resistant PVC tube
- Clear visual flow
- -40°F cold weather resistance
- Sub-zero flexibility
- Easy to drag with "Go-Glide" external clockwise PVC helix

Part	1.0	D.	o	.D.	Reinf.	Max. @ 68	W.P. 8° F	Vacuum @ 68°F	We	ight		mum Radius	Std. Length.
Number	inch	mm	inch	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
3030-0400-100	4	101.60	4.55	115.57	PVC Helix	35	2.41	29.0	1.35	2.01	9.00	228.60	100
3030-0500-100	5	127.00	5.60	142.24	PVC Helix	30	2.07	24.0	1.75	2.60	10.00	254.00	100
3030-0600-100	6	152.40	6.79	172.47	PVC Helix	25	1.72	24.0	2.42	3.60	11.00	279.40	100

DESIGN FACTOR: 3:1

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

WWW.JASONINDUSTRIAL.COM

3035

ABRASION RESISTANT SBR MATERIAL HANDLING HOSE

CONSTRUCTION: Abrasion resistant SBR tube and cover that are both static dissipating with a sturdy clockwise helix.

TEMPERATURE: -40°F (-40°C) to +140°F (+60°C)

APPLICATION: Abrasive suction for crushed rock, sand, dry fertilizer, small gravel and powdered cement. Can also be used as a boom hose for catch basin clean out.

FEATURES:

- Heavy-duty abrasion resistance
- -40°F cold weather resistance
- Sub-zero flexibility
- No ground wire is needed as the tube and cover compound are static dissipating
- Lightweight

Part	I.C).	0	.D.	Reinf.	-	« W.P. 68°F	Vacuum @ 68°F	We	ight		mum Radius	Std. Length
Number	in.	mm	in.	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
3035-0150-100	1-1/2	38.10	1.82	46.23	PVC Helix	45	3.10	29.0	0.37	0.55	2.00	50.80	100
3035-0200-100	2	50.80	2.35	59.69	PVC Helix	40	2.76	29.0	0.50	0.74	2.50	63.50	100
3035-0250-100	2-1/2	63.50	2.95	74.93	PVC Helix	35	2.41	29.0	0.88	1.31	2.50	63.50	100
3035-0300-100	3	76.20	3.51	89.15	PVC Helix	35	2.41	29.0	1.10	1.64	3.00	76.20	100
3035-0400-100	4	101.60	4.63	117.60	PVC Helix	30	2.07	29.0	1.76	2.62	4.50	114.30	100
3035-0500-100	5	127.00	5.75	146.05	PVC Helix	30	2.07	28.0	2.47	3.68	5.00	127.00	100
3035-0600-050	6	152.40	6.73	170.94	PVC Helix	30	2.07	28.0	3.09	4.60	9.00	228.60	50
3035-0600-100	6	152.40	6.73	170.94	PVC Helix	30	2.07	28.0	3.09	4.60	9.00	228.60	100
3035-0800-050	8	203.20	9.04	230.00	PVC Helix	30	2.07	27.0	5.65	8.40	15.00	381.00	50

DESIGN FACTOR: 3:1

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

MARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

4310

GUNITE HOSE

CONSTRUCTION: Tube is 1/4" thick, pure gum rubber, tan color. Cover is SBR/EPDM blend, pin-pricked and tan in color. Reinforcement is a two-ply synthetic fabric with a static wire.

TEMPERATURE: -40°F (-40°C) to +158°F (+70°C)

BRANDING: Jason logo 4310 GUNITE 150 PSI 10.35 BAR.

APPLICATION: For conveyance of sand and cement to the mixing gun.

FEATURES:

- 1/4" gum tube has superior abrasion resistance
- Weather and abrasion resistant cover
- Cover compound is non-marking, allows for work around buildings and pool tiles

Part	1.1	D.	о	.D.	Reinf.	-	W.P. 8°F	Vacuum @ 68°F (in	Wei	ght		mum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4310-0150-050	1-1/2	38.10	2.38	60.33	2	150	10.35	n/a	1.10	1.64	15.00	380.00	50
4310-0163-050	1-5/8	41.28	2.52	64.00	2	150	10.35	n/a	1.40	2.09	16.50	420.00	50
4310-0200-050	2	50.80	2.88	72.90	2	150	10.35	n/a	1.65	2.46	20.00	508.00	50
4310-0250-050	2-1/2	63.50	3.88	98.30	2	150	10.35	n/a	2.30	3.42	25.00	635.00	50

DESIGN FACTOR: 3:1

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

WWW.JASONINDUSTRIAL.COM

4312

2-PLY SANDBLAST HOSE

CONSTRUCTION: Tube is an NR/BR blend which is 1/4" thick, black and static dissipating. Cover is an SBR/EPDM blend, pin-pricked. Reinforcement is a two-ply synthetic fabric. TEMPERATURE: -25°F (-32°C) to +185°F (+85°C)

APPLICATION: For conveyance of highly abrasive materials in sandblasting/cleaning and general maintenance in construction, shipyards, power plants and equipment rental.

FEATURES:

- Tube compounds are static-dissipating
- Highly abrasion resistant tube that will handle any blast grit
- Cover is abrasion and weather resistant

Part	1.1	D.	0	.D.	Reinf.	-	x W.P. 68°F	Vacuum @ 68°F	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4312-0050-050	1/2	12.70	1.00	25.40	2	150	10.35	n/a	0.31	0.46	5.00	127.00	50
4312-0051-050	1/2	12.70	1.06	26.99	2	150	10.35	n/a	0.33	0.49	5.00	127.00	50
4312-0051-100	1/2	12.70	1.06	26.99	2	150	10.35	n/a	0.33	0.49	5.00	127.00	100
4312-0052-050	1/2	12.70	1.13	28.58	2	150	10.35	n/a	0.38	0.57	5.00	127.00	50
4312-0075-050	3/4	19.05	1.50	38.10	2	150	10.35	n/a	0.60	0.89	7.50	190.00	50

DESIGN FACTOR: 3:1

BRANDING: None

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

WWW.JASONINDUSTRIAL.COM

4313

LIGHTWEIGHT SANDBLAST HOSE

4313 LW SANDBLAS

CONSTRUCTION: Tube is NR/BR blend which is static dissipating. Cover is an SBR/EPDM blend, black. Reinforcement is a two-ply synthetic fabric.

TEMPERATURE: -25°F (-32°C) to +185°F (+85°C)

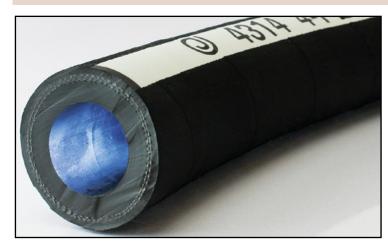
BRANDING: Jason logo 4313 LW SANDBLAST 1-7/8" O.D. WP 150 PSI 10.35 BAR. White longitudinal mylar stripe.

APPLICATION: For conveyance of highly abrasive materials in sandblasting/cleaning operations.

FEATURES:

- Tube compounds are static-dissipating
- Highly abrasion resistant tube that will handle any blast grit
- Cover is abrasion and weather resistant
- Lighter weight than standard sandblast hose
- Maintains the high quality features
- Utilizes couplings or nozzle holders made to fit 1-7/8" O.D. hose

DESIGN FACTOR: 3:1


Part	1.1	D.	0.	D.	Reinf.	-	W.P. 8°F	Vacuum @ 68°F	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4313-0125-050	1-1/4	31.75	1.88	47.63	2	150	10.35	n/a	0.83	1.24	10.00	254.00	50
4313-0125-100	1-1/4	31.75	1.88	47.63	2	150	10.35	n/a	0.83	1.24	10.00	254.00	100
4313-0125-200	1-1/4	31.75	1.88	47.63	2	150	10.35	n/a	0.83	1.24	10.00	254.00	200

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

4-PLY SANDBLAST HOSE

- **CONSTRUCTION:** Tube is a NR/BR blend, 1/4" thick, black and static dissipating. Cover is an SBR/EPDM blend, black. Reinforcement is a four-ply synthetic fabric.
- TEMPERATURE: -25°F (-32°C) to +185°F (+85°C)
- **BRANDING:** Jason logo 4314 4-PLY SANDBLAST WP 150 PSI 10.35 BAR. White mylar longitudinal stripe.

APPLICATION: For sandblasting/cleaning operations in construction, shipyards, steel mills and refineries.

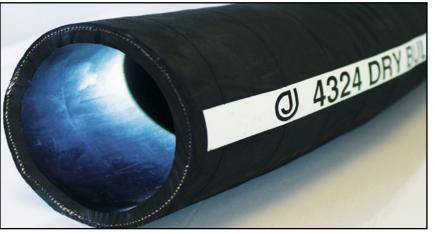
FEATURES:

- Tube compounds are static-dissipating
- Highly abrasion resistant tube that will handle any blast grit
- Cover is abrasion and weather resistant
- Highly abrasion resistant tube handles manufactured coal slag, aluminum oxide or grit
- Each O.D. is held to strict tolerances (ARPM) for ideal coupling compatibility

Part	1.1	D.	0.	.D.	Reinf.	-	x W.P. 68°F	Vacuum @ 68°F (in	Wei	ght		mum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4314-0075-050	3/4	19.05	1.50	38.10	4	150	10.35	n/a	0.66	0.98	7.50	190.0	50
4314-0075-100	3/4	19.05	1.50	38.10	4	150	10.35	n/a	0.66	0.98	7.50	190.0	100
4314-0075-200	3/4	19.05	1.50	38.10	4	150	10.35	n/a	0.66	0.98	7.50	190.0	200
4314-0100-050	1	25.40	1.88	47.63	4	150	10.35	n/a	0.80	1.19	10.00	254.0	50
4314-0100-100	1	25.40	1.88	47.63	4	150	10.35	n/a	0.80	1.19	10.00	254.0	100
4314-0100-200	1	25.40	1.88	47.63	4	150	10.35	n/a	0.80	1.19	10.00	254.0	200
4314-0125-050	1-1/4	31.75	2.16	53.18	4	150	10.35	n/a	1.04	1.55	12.60	320.0	50
4314-0125-100	1-1/4	31.75	2.16	53.18	4	150	10.35	n/a	1.04	1.55	12.60	320.0	100
4314-0125-200	1-1/4	31.75	2.16	53.18	4	150	10.35	n/a	1.04	1.55	12.60	320.0	200
4314-0150-050	1-1/2	38.10	2.38	60.33	4	150	10.35	n/a	1.25	1.86	15.00	380.0	50
4314-0150-100	1-1/2	38.10	2.38	60.33	4	150	10.35	n/a	1.25	1.86	15.00	380.0	100
4314-0150-200	1-1/2	38.10	2.38	60.33	4	150	10.35	n/a	1.25	1.86	15.00	380.0	200
4314-0200-050	2	50.80	2.88	73.03	4	150	10.35	n/a	1.45	2.16	20.00	508.0	50
4314-0200-100	2	50.80	2.88	73.03	4	150	10.35	n/a	1.45	2.16	20.00	508.0	100

DESIGN FACTOR: 3:1

4314


All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

WWW.JASONINDUSTRIAL.COM

43221/8" TUBE SAND & DRY CEMENT, POWDER DISCHARGE HOSE43233/16" TUBE SAND & DRY CEMENT, POWDER DISCHARGE HOSE43241/4" TUBE SAND & DRY CEMENT, POWDER DISCHARGE HOSE

CONSTRUCTION: Tube is NR/BR blend, black and static-dissipating. Cover is SBR/EPDM blend Reinforcement is a two-ply synthetic fabric.

TEMPERATURE: -40°F (-40°C) to +185°F (+85°C)

BRANDING: Jason logo 4322, 4323 or 4324 DRY BULK DISCHARGE ID Tube WP 75 PSI 5.17 BAR. White mylar longitudinal stripe. APPLICATION: For pneumatic discharge of dry powders, dry cement or other dry materials. Also used for sand/water mix applications on fracking sites.

FEATURES:

- Special static dissipating tube compound
- Weather and ozone resistant
- High abrasion resistant tube resists cutting/gouging
- Can be rolled for transport and storage

Part Number		I.D.	C	D.D.	Reinf. Plies	-	x W.P. 68°F	Vacuum @ 68°F	Wei	ght		imum Radius	Std. Length
Number	in.	mm	in.	mm	Files	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
					1/8" TUB	E THIC	KNESS						
4322-0400-100	4	101.60	4.48	113.79	2	75	5.17	n/a	1.60	2.38	40.00	1016.00	100
4322-0500-100	5	127.00	5.46	138.68	2	75	5.17	n/a	1.88	2.80	50.00	1270.00	100
				3	/16" TUB	E THI	CKNESS						
4323-0400-100	4	101.60	4.68	118.87	2	75	5.17	n/a	2.42	3.60	40.00	1016.00	100
4323-0500-100	5	127.00	5.68	144.27	2	75	5.17	n/a	2.92	4.35	50.00	1270.00	100
					1/4" TUB	e thic	KNESS						
4324-0400-100	4	101.60	4.84	122.94	2	75	5.17	n/a	3.23	4.81	40.00	1016.00	100
4324-0500-100	5	127.00	5.84	148.34	2	75	5.17	n/a	3.80	5.65	50.00	1270.00	100

DESIGN FACTOR: 3:1

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

4370

CONCRETE PLACEMENT HOSE - 800 PSI

CONSTRUCTION: Tube is a blend of synthetic and natural elastomers, black, smooth and anti-static. Cover is also a SBR/EPDM blend of elas tomers, black, smooth with a cloth impres sion. Reinforcement is several spirals of high tensile textile cord.

TEMPERATURE: -22°F (-30°C) to +158°F (+70°C)

BRANDING: Jason logo 4370 800 PSI WP TEXTILE CONCRETE PLACEMENT. Clear mylar longitudinal stripe. **APPLICATION:** High pressure concrete placement applications.

FEATURES:

- Anti-static tube and cover
- Cover is abrasion, weather and ozone resistant
- Designed for high kink resistance

Part		.D.	O).D.	Reinf.	Max \ @ 68		Vacuum @ 68°F (in	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Spirals	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4370-0200-050	2	50.80	2.68	68.00	6	800	55.2	n/a	1.41	2.09	13.75	350.00	50
4370-0200-100	2	50.80	2.68	68.00	6	800	55.2	n/a	1.41	2.09	13.75	350.00	100
4370-0300-050	3	76.20	3.78	96.00	6	800	55.2	n/a	2.40	3.57	16.10	408.00	50
4370-0300-100	3	76.20	3.78	96.00	6	800	55.2	n/a	2.40	3.57	16.10	408.00	100
4370-0400-050	4	101.60	4.96	126.00	8	800	55.2	n/a	4.23	6.29	26.00	660.00	50
4370-0400-100	4	101.60	4.96	126.0	8	800	55.2	n/a	4.23	6.29	26.00	660.00	100

DESIGN FACTOR: 3:1

All sizes may not be stocked in all locations. Check with customer service for availability.

4373

TEXTILE CONCRETE PLACEMENT HOSE - 1275 PSI

CONSTRUCTION: Tube is smooth black NR/SBR.

Cover is a black NR/SBR, smooth with a cloth impression. Reinforcement is several spirals of high tensile synthetic textile cord with an anti-static copper wire.

TEMPERATURE: -40°F (-40°C) to +212°F (+100°C)

BRANDING: Jason logo 4373 SIZE 1275 PSI WP TEXTILE CONCRETE PLACEMENT. Clear mylar longitudinal stripe. **APPLICATION:** Higher pressure concrete placement, plaster and grout, shotcrete, and concrete pump applications.

FEATURES:

- Anti-static copper wire
- Cover is abrasion, weather and ozone resistant
- Designed for high kink resistance

Part		l.D.	0	.D.	Reinf.	Max V @ 68		Vacuum @ 68°F (in	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Spirals	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4373-0200-050	2	50.80	2.83	72.00	4	1275	85.0	n/a	1.61	2.39	12	304.8	50
4373-0200-100	2	50.80	2.83	72.00	4	1275	85.0	n/a	1.61	2.39	12	304.8	100
4373-0250-050	2.5	63.5	3.41	86.70	6	1275	85.0	n/a	2.17	3.23	14	355.6	50
4373-0250-100	2.5	63.5	3.41	86.70	6	1275	85.0	n/a	2.17	3.23	14	355.6	100
4373-0300-050	3	76.20	3.92	99.60	6	1275	85.0	n/a	2.61	3.88	16	406.4	50
4373-0300-100	3	76.20	3.92	99.60	6	1275	85.0	n/a	2.61	3.88	16	406.4	100

DESIGN FACTOR: 2:1

MATERIAL HANDLING HOSE

All sizes may not be stocked in all locations. Check with customer service for availability.

CONCRETE PLACEMENT HOSE - 1300 PSI

CONSTRUCTION: Tube is a blend of synthetic and natural elastomers, black, smooth and anti-static. Cover is also a blend of synthetic and natural elastomers, black, smooth with a cloth impression and anti-static. Reinforcement is a 2 or 4-spiral high tensile steel wire.

TEMPERATURE: -22°F (-30°C) to +185°F (+85°C)

BRANDING: Jason logo 4375 1300 PSI WP WIRE CONCRETE PLACEMENT. Clear stripe with reversed lettering.

DESIGN FACTOR: 3:1

APPLICATION: For very high pressure concrete placement applications.

FEATURES:

- Tube and cover compounds are anti-static
- Tube is abrasion resistant
- Cover is abrasion, ozone and weather resistant
- Designed for high kink resistance

59

Part	١.	D.	0	.D.	Reinf.		W.P. 8°F	Vacuum @ 68°F	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Spirals	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4375-0200-050	2	50.80	2.87	73.00	2	1300	89.6	n/a	1.95	2.91	16.10	410.00	50
4375-0200-100	2	50.80	2.87	73.00	2	1300	89.6	n/a	1.95	2.91	16.10	410.00	100
4375-0300-050	3	76.20	4.02	102.00	4	1300	89.6	n/a	3.63	5.40	24.00	610.00	50
4375-0300-100	3	76.20	4.02	102.00	4	1300	89.6	n/a	3.63	5.40	24.00	610.00	100
4375-0400-050	4	101.60	5.12	130.00	4	1300	89.6	n/a	5.31	7.90	32.30	820.00	50
4375-0400-100	4	101.60	5.12	130.00	4	1300	89.6	n/a	5.31	7.90	32.30	820.00	100

All sizes may not be stocked in all locations. Check with customer service for availability.

4425

HOT AIR BLOWER HOSE

CONSTRUCTION: Tube is EPM. Cover is EPDM brown, fabric impression. Reinforcement is synthetic fabric with a dual wire helix.

TEMPERATURE: Intermittent to +350°F (+177°C)

BRANDING: Jason logo 4425 HOT AIR 325°F WP 50 PSI 3.4 BAR. White mylar longitudinal stripe.

APPLICATION: Used to convey hot air from blower to tank on bulk transport trucks.

FEATURES:

- EPM tube and EPDM cover for high heat resistance
- Temperature range up to 350°F (intermittent)
- Excellent flexibility
- All sizes full vacuum

Dual steel wires to ground the hose, must be attached to fittings if application requires - See page 16

Part		.D.	0.	.D.	Re- inf.	Max @ 6	W.P. 8°F	Vacuum @ 68°F (in	We	ight		mum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4425-0300-100	3	76.20	3.56	90.42	2	150	10.34	29.0	1.81	2.69	7.87	200	100
4425-0400-100	4	101.60	4.68	118.90	4	150	10.34	29.0	2.91	4.33	9.45	240	100

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

DESIGN FACTOR: 3:1

PLASTER AND GROUT HOSE

CONSTRUCTION: Tube is NR/BR blend. Cover is a SBR/EPDM blend, pin-pricked. Reinforcement is four plies of synthetic textile with a static wire.

TEMPERATURE: -40°F (-40°C) to +158°F (+70°C)

BRANDING: Jason logo 4428 PLASTER GROUT WP 800 PSI 55.2 BAR. White mylar longitudinal stripe. **APPLICATION:** Used for spraying plaster, grout, sand and gypsym.

FEATURES:

- Cover ozone and weather resistant
- Very good abrasion resistance
- Handles a variety of applications

Part	1.0	D.	0.	D.	Reinf.	Max @ 6	W.P. 8°F	Vacuum @ 68°F	We	ight		mum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4428-0100-100	1	25.4	1.67	42.40	4	800	55.20	n/a	1.05	1.49	n/a	n/a	100
4428-0150-100	1-1/2	38.10	2.20	56.00	4	800	55.20	n/a	1.07	1.59	n/a	n/a	100
4428-0200-100	2	50.80	2.76	70.00	4	800	55.20	n/a	1.43	2.13	n/a	n/a	100
4428-0250-100	2-1/2	63.50	3.31	84.00	4	800	55.20	n/a	1.73	2.58	n/a	n/a	100

DESIGN FACTOR: 3:1

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

4470

BULK MATERIAL SUCTION HOSE - SΩ

CONSTRUCTION: Tube is 1/4" NR blend, tan color. Cover is SBR/EPDM blend, fabric impression, corrugated and black. Reinforcement is a two-ply synthetic fabric with a wire helix and a static wire.

TEMPERATURE: -40°F (-40°C) to +180°F (+82°C) **BRANDING:** Jason logo 4470 DRY BULK SUCTION WP (PSI) (BAR). White mylar longitudinal stripe **APPLICATION:** For suction, discharge or gravity flow of abrasives from manufacturing, sandblast recovery, mineral processing power plants and spill recovery.

FEATURES:

- 1/4" NR blend tube is highly abrasion resistant
- Corrugated to make the hose flexible, even in tight bends
- Weather and ozone resistant
- All sizes are full vacuum
- Safety Ohm (SΩ) ground wire embedded into the hose wall to help prevent the build-up of static electricity.
 SΩ wire must be secured to ground to dissipate static electricity.

Part	Number		O.D.		Reinf.		: W.P. 68°F	Vacuum @ 68°F	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4470-0125-100	1-1/4	31.75	1.81	46.00	2	75	5.17	29.0	0.77	1.14	4.00	101.60	100
4470-0150-100	1-1/2	38.10	2.10	53.34	2	75	5.17	29.0	1.11	1.65	4.00	101.60	100
4470-0200-100	2	50.80	2.60	66.04	2	75	5.17	29.0	1.30	1.93	12.00	304.80	100
4470-0250-100	2-1/2	63.50	3.11	78.99	2	75	5.17	29.0	1.65	2.46	17.00	431.80	100
4470-0300-100	3	76.20	3.66	92.96	2	75	5.17	29.0	2.25	3.35	18.00	457.20	100
4470-0400-050	4	101.60	4.69	119.13	2	75	5.17	29.0	2.93	4.36	24.00	609.60	50
4470-0400-100	4	101.60	4.69	119.13	2	75	5.17	29.0	2.93	4.36	24.00	609.60	100
4470-0500-100	5	127.00	5.70	144.78	2	75	5.17	29.0	3.83	5.70	30.00	762.00	100
4470-0600-050	6	152.40	6.73	170.94	2	75	5.17	29.0	5.00	7.44	32.00	812.80	50
4470-0600-100	6	152.40	6.73	170.94	2	75	5.17	29.0	5.00	7.44	32.00	812.80	100
4470-0800-020	8	203.20	9.13	231.90	2	75	5.17	29.0	10.05	14.96	40.00	1016.00	20
4470-0800-050	8	203.20	9.13	231.90	2	75	5.17	29.0	10.05	14.96	40.00	1016.00	50

DESIGN FACTOR: 3:1

 $S\Omega$ = Safety Ohm

All sizes may not be stocked in all locations. Check with customer service for availability.

le disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

FOR DUST CONTROL IN UNDERGROUND MINING

SERIES

PAGE

JASON®

TRIAL

4182	MSHA Mine Spray Hose	64
4183	MSHA Washdown Service/MSHA Mine Spray Hose	65

Hoses are constantly being upgraded. Jason Industrial reserves the right to make changes in construction without prior notice.

MINE SPRAY HOSE

4182

MSHA MINE SPRAY HOSE

CONSTRUCTION: NBR/SBR tube, smooth and black. Cover is CR, fabric impression, pinpricked, yellow. Reinforcement is two plies of steel wire.

TEMPERATURE: -22°F (-30°C) to +194°F (+90°C)

BRANDING: Jason logo 4182 MINE SPRAY MSHA IC-84-42 1000 PSI WP 69 BAR. Black longitudinal stripe. **APPLICATION:** For dust control in underground water spray operations.

FEATURES:

- Meets MSHA rating IC-84-42
- Flame retardant
- Visible yellow color
- Cover is weather and abrasion resistant

DESIGN FACTOR: 3:1

Part	I.I	D.	С	O.D.		-	W.P. 8°F	Vacuum @ 68°F	We	ight		imum Radius	Std. Length	
Number	in.	mm	in.	mm	Plies	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)	
4182-0050-050	1/2	12.70	0.97	24.60	2	1000	68.95	n/a	0.40	0.60	5.90	150.00	50	
4182-0050-100	1/2	12.70	0.97	24.60	2	1000	68.95	n/a	0.40	0.60	5.90	150.00	100	
4182-0075-050	3/4	19.05	1.22	30.99	2	1000	68.95	n/a	0.60	0.89	8.30	210.00	50	
4182-0075-100	3/4	19.05	1.22	30.99	2	1000	68.95	n/a	0.60	0.89	8.30	210.00	100	
4182-0100-050	1	25.40	1.49	37.85	2	1000	68.95	n/a	0.80	1.19	11.00	280.00	50	
4182-0100-100	1	25.40	1.49	37.85	2	1000	68.95	n/a	0.80	1.19	11.00	280.00	100	
4182-0125-050	1-1/4	31.75	1.81	45.97	2	1000	68.95	n/a	1.05	1.56	14.00	355.00	50	
4182-0125-100	1-1/4	31.75	1.81	45.97	2	1000	68.95	n/a	1.05	1.56	14.00	355.00	100	
4182-0150-050	1-1/2	38.10	2.04	51.82	2	1000	68.95	n/a	1.24	1.85	16.50	420.00	50	
4182-0150-100	1-1/2	38.10	2.04	51.82	2	1000	68.95	n/a	1.24	1.85	16.50	420.00	100	
4182-0200-050	2	50.80	2.60	66.04	2	1000	68.95	n/a	1.80	2.68	22.00	560.00	50	
4182-0200-100	2	50.80	2.60	66.04	2	1000	68.95	n/a	1.80	2.68	22.00	560.00	100	

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

🔨 WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

4183

WASHDOWN SERVICE/MSHA MINE SPRAY HOSE

TUBE: NBR Synthetic Rubber (ARPM Class B) **COVER:** NBR/PVC Synthetic Rubber (ARPM Class B) Yellow color, MSHA approved, Pin-Pricked **REINFORCEMENT:** 1/2" to 1-1/4" - 1 steel wire braid 1-1/2" to 2" - 2 steel wire braid

TEMPERATURE: -40°F to +212°F (-40°C to +100°C)

BRANDING: J (logo) Jason 4183 Mine Spray/Washdown Service (I.D. in inch & mm) 1000 PSI (69 Bar) WP, Fire Resistant, MSHA IC-304/04 Blue longitudinal stripe

APPLICATION: For general washdown service as well as dust control in mining operations.

FEATURES:

- Meets MSHA flame resistance requirements
- High visibility yellow cover
- Cover is weather and abrasion resistant

Approved for use with Jason 12 Series hose couplings. See Hydraulic Hose guide for more information.

Part	١.	D.	0.	D.	Reinf.	Cover	Max @ 6	W.P. 8°F	Vacuum @ 68°F				imum Radius	Std. Length
Number	in.	mm	in.	mm	Plies		PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4183-0050-400	1/2	12.7	0.84	21.3	1	Smooth	1000	69.0	n/a	0.28	0.42	5.9	150	400
4183-0075-300	3/4	19.0	1.14	29.0	1	Smooth	1000	69.0	n/a	0.44	0.66	7.9	200	300
4183-0100-200	1	25.4	1.45	36.8	1	Smooth	1000	69.0	n/a	0.65	0.96	9.8	250	200
4183-0125-150	1-1/4	31.8	1.75	44.5	1	Wrapped	1000	69.0	n/a	0.89	1.32	11.8	300	150
4183-0150-150	1-1/2	38.1	1.98	50.3	2	Wrapped	1000	69.0	n/a	0.99	1.47	15.7	400	150
4183-0200-150	2	50.8	2.52	64.0	2	Wrapped	1000	69.0	n/a	1.38	2.06	19.7	500	150

DESIGN FACTOR: 4:1

All sizes may not be stocked in all locations. Check with customer service for availability.

FOR IN-PLANT OR TANK TRUCK USE TO TRANSFER PETROLEUM PRODUCTS

SERIES

PAGE

	Petroleum Drop Hose for Suction & Delivery of Gasoline	67
		60
	and Alternative Fuels - $S\Omega$	68
	Polyurethane Gasoline & Alternative Fuel Vapor Recovery Hose - S0	69
	HD Polyurethane Gasoline & Alternative Fuel Vapor	70
	NBR/PVC Drop Hose for Suction & Gasoline Delivery - S Ω	71
	Oilfield Clean-Up and Spill Recovery Hose	72
	Safety Oilfield Clean-Up and Recovery Hose	73
	Blue Low Temp Petroleum Suction Hose - Corrugated	74
	Nitrile Petroleum Suction Hose - 300 PSI	75
	Nitrile Petroleum Suction Hose - 150 PSI	76
	Tank Truck Hose - Red Corrugated	77
	Nitrile Petroleum Suction Hose - 400 PSI	78
	Dreamflex Petroleum Transfer & Suction Hose	79
	Hot Tar & Asphalt Suction Hose - 150 PSI	80
	Oilfield Petro Waste Suction Hose	81
	Red Diamond Oilfield Special 5K	82
	Red Diamond Rig Hose - 4SH	83
	Red Diamond Hot Oiler Hose	84
NEW!	SAE30-R11 Fuel Line	85
	NEW!	 and Alternative Fuels - SΩ Petroleum Drop Hose for Suction & Delivery of Gasoline and Alternative Fuels - SΩ Polyurethane Gasoline & Alternative Fuel Vapor Recovery Hose - SΩ HD Polyurethane Gasoline & Alternative Fuel Vapor Recovery Hose - SΩ NBR/PVC Drop Hose for Suction & Gasoline Delivery - SΩ Oilfield Clean-Up and Spill Recovery Hose Safety Oilfield Clean-Up and Recovery Hose Blue Low Temp Petroleum Suction Hose - Corrugated Nitrile Petroleum Suction Hose - 150 PSI Tank Truck Hose - Red Corrugated Nitrile Petroleum Suction Hose - 400 PSI Dreamflex Petroleum Transfer & Suction Hose Hot Tar & Asphalt Suction Hose Gilfield Petro Waste Suction Hose Red Diamond Rig Hose - 4SH Red Diamond Hot Oiler Hose

Hoses are constantly being upgraded. Jason Industrial reserves the right to make changes in construction without prior notice.

3040POLYURETHANE DROP HOSE FOR SUCTION AND DELIVERY
OF GASOLINE AND ALTERNATIVE FUELS - SΩ

TEMPERATURE: -40°F (-40°C) to +140°F (+60°C) **APPLICATION:** Used in the delivery of biofuels,

DESIGN FACTOR: 3:1

gasoline, kerosene and fuel oil.

FEATURES:

- Higher transfer pressures
- Clear visual flow
- -40°F cold weather resistance
- Sub-zero flexibility
- Easy to drag with "Go-Glide" external clockwise PVC helix
- Safety Ohm (SΩ) ground wire embedded into the hose wall to help prevent the build-up of static electricity.
 SΩ wire must be secured to ground to dissipate static electricity.
- Vacuum up to 29" of Hg

Part	I.	D.	0	O.D.		-	x W.P. 68°F	Vacuum @ 68°F	Wei	ght		mum Radius	Std. Length
Number	in.	mm	in.	mm	Braids	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
3040-0200-100	2	50.80	2.46	62.48	1	75	5.17	29.0	0.63	0.94	4.00	101.60	100
3040-0300-100	3	76.20	3.78	96.01	1	65	4.48	29.0	1.20	1.79	6.00	152.40	100
3040-0400-100	4	101.60	4.83	122.68	1	65	4.48	29.0	1.71	2.54	8.00	203.20	100

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

Note: Use JASON GREEN banding sleeves only when securing coupling for 3" and 4" ID's. Discharge pressures and vacuum are temperature dependent.

3045POLYURETHANE DROP HOSE FOR SUCTION AND DELIVERY
OF GASOLINE AND ALTERNATIVE FUELS - SΩ

CONSTRUCTION: Polyurethane tube, smooth bore with embedded SΩ ground wire in the hose wall with a sturdy clockwise PVC helix, one braid of high tensile polyester yarn reinforcement.
 TEMPERATURE: -40°F (-40°C) to +140°F (+60°C)

APPLICATION: Used in the delivery of biofuels, gasoline, kerosene and fuel oil.

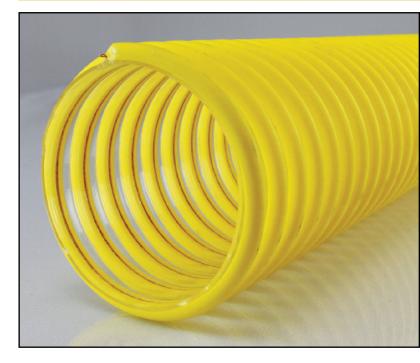
FEATURES:

- Higher transfer pressures
- -40°F cold weather resistance
- Sub-zero flexibility
- Easy to drag with "Go-Glide" external clockwise PVC helix
- Safety Ohm (SΩ) ground wire embedded into the hose wall to help prevent the build-up of static electricity.
 SΩ wire must be secured to ground to dissipate static electricity.
 - Vacuum up to 29" of Hg

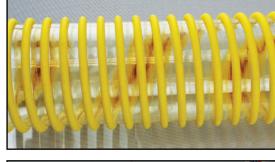
Part	I.	D.			Reinf.	-	k W.P. 68°F	Vacuum @ 68°F (in	Weight		Minimum Bend Radius		Std. Length
Number	in.	mm	in.	mm	Braids	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
3045-0300-100	3	76.20	3.78	96.01	1	65	4.48	29.0	1.20	1.79	6.00	152.40	100
3045-0400-100	4	101.60	4.83	122.68	1	65	4.48	29.0	1.71	2.54	8.00	203.20	100

Note: Use JASON GREEN banding sleeves only when securing coupling for 3" and 4" ID's. Discharge pressures and vacuum are temperature dependent.

We disclaim any liability for use of our products in applications other than which they are designed.


DESIGN FACTOR: 3:1

3050


POLYURETHANE GASOLINE AND ALTERNATIVE FUEL VAPOR RECOVERY HOSE - SΩ

 CONSTRUCTION: Polyurethane tube with a sturdy clockwise PVC helix with SΩ ground wire embedded into the hose wall.

 TEMPERATURE: -40°F (-40°C) to +140°F (+60°C)

APPLICATION: Used to remove vapors from gasoline and alternative fuels to recovery system in tank truck operations.

FEATURES:

- Clear visual flow
- -40°F cold weather resistance
- Sub-zero flexibility
- Easy to drag with "Go-Glide" external clockwise PVC helix
- Safety Ohm (SΩ) ground wire embedded into the hose wall to help prevent the build-up of static electricity.
 SΩ wire must be secured to ground to dissipate static electricity.

Part	1.	.D.	0.	D.	Reinf.	-	W.P. 8°F	Vacuum @ 68°F	Weight		Minimum Bend Radius		Std. Length
Number	in.	mm	in.	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
3050-0200-100	2	50.80	2.45	62.23	PVC Helix	10	0.69	15.0	0.50	0.74	3.00	76.20	100
3050-0300-100	3	76.20	3.54	89.92	PVC Helix	8	0.55	15.0	0.79	1.18	4.00	101.60	100
3050-0400-100	4	101.60	4.57	116.08	PVC Helix	7	0.48	12.0	1.11	1.65	5.00	127.00	100

Note: Use JASON YELLOW banding sleeves only when securing coupling for 2", 3" and 4" ID's.

SΩ = Safety Ohm

DESIGN FACTOR: 3:1

- All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.
- N WARNING: This product can expose you to chemicals including DINP, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

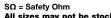
PETROLEUM HOSE

3053

HD POLYURETHANE GASLOINE AND ALTERNATIVE FUEL VAPOR RECOVERY HOSE - SQ

CONSTRUCTION: Polyurethane tube with a sturdy clockwise PVC helix with $S\Omega$ ground wire embedded into the hose wall. **TEMPERATURE:** -40°F (-40°C) to +140°F (+60°C)

APPLICATION: Used to remove vapors from gasoline and alternative fuels to recovery system in tank truck and terminal operations.


FEATURES:

- Clear visual flow
- -40°F cold weather resistance
- Sub-zero flexibility
- Easy to drag with "Go-Glide" external clockwise PVC helix
- Safety Ohm (SΩ) ground wire embedded into the hose wall to help prevent the build-up of static electricity. $S\Omega$ wire must be secured to ground to dissipate static electricity.

Part	I.	D.	0	.D.	Reinf.		W.P. 8°F	Vacuum @ 68°F	We	ight	Minimum Bend Radius		Std. Length
Number	in.	mm	in.	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
3053-0300-100	3	76.20	3.57	90.68	PVC Helix	8	0.55	15.0	0.95	1.41	5.00	127.00	100
3053-0400-100	4	101.60	4.61	117.09	PVC Helix	7	0.48	12.0	1.27	1.89	6.00	152.40	100

DESIGN FACTOR: 3:1

Note: Use JASON YELLOW banding sleeves only when securing coupling for 3" and 4" ID's.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including DINP, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

NBR/PVC DROP HOSE FOR SUCTION AND DELIVERY OF GASOLINE - $S\Omega$

CONSTRUCTION: NBR/PVC tube, smooth bore with embedded S Ω ground wire in the hose wall with a sturdy clockwise PVC helix, one braid of high tensile polyester yarn reinforcement.

TEMPERATURE: -10°F (-23°C) to +140°F (+60°C)

APPLICATION: Used to deliver gasoline, diesel fuel, kerosene and fuels with aromatic content to 40%.

FEATURES:

- Higher transfer pressures
- Easy to drag with "Go-Glide" external clockwise PVC helix
- Safety Ohm (SΩ) ground wire embedded into the hose wall to help prevent the build-up of static electricity.
 SΩ wire must be secured to ground to dissipate static electricity.

Part	I.	D.	O.D.		Reinf.	Max @ 6		Vacuum @ 68°F	Wei	ght		mum Radius	Std. Length
Number	in.	mm	in.	mm	Braids	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
3058-0200-100	2	50.80	2.68	68.07	1	70	4.83	29.9	1.13	1.68	5.00	127.00	100
3058-0300-100	3	76.20	3.68	93.47	1	65	4.48	29.9	1.37	2.04	6.00	152.40	100
3058-0400-100	4	101.60	4.80	121.92	1	65	4.48	29.9	2.16	3.21	8.00	203.20	100

DESIGN FACTOR: 3:1

3058

Note: Use JASON ORANGE banding sleeves only when securing coupling for 3" and 4" ID's. Discharge pressures and vacuum are temperature dependent.

 $S\Omega = Safety Ohm$

All sizes may not be stocked in all locations. Check with customer service for availability.

3085

OILFIELD CLEAN-UP & SPILL RECOVERY HOSE

CONSTRUCTION: NBR/PVC tube with a PVC clockwise helix.

TEMPERATURE: -40°F (-40°C) to +140°F (+60°C) **BRANDING:** None

APPLICATION: Great for the recovery of waste crude oil, diesel fuel and salt water. Used for cleaning up tank bottoms and oil spills.

FEATURES:

- NBR/PVC tube is oil and gas resistant
- Very flexible and easy to handle
- All sizes are full vacuum
- Cold weather resistant

Part	I	.D.	C).D.	Reinf.	Max W Reinf.		Vacuum @ 68°F	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
3085-0200-100	2	50.80	2.43	61.72	PVC Helix	50	3.45	29.0	0.67	1.00	4.00	101.60	100
3085-0300-100	3	76.20	3.52	89.41	PVC Helix	45	3.10	29.0	1.10	1.64	6.00	152.40	100
3085-0400-100	4	101.60	4.60	116.84	PVC Helix	38	2.62	29.0	1.84	2.74	8.20	208.30	100

DESIGN FACTOR: 3:1

Note: Vacuum is temperature dependent.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

3087

SAFETY OILFIELD CLEAN-UP AND RECOVERY HOSE - SΩ

CONSTRUCTION: NBR/PVC tube with a PVC clockwise helix with an $S\Omega$ ground wire.

TEMPERATURE: -40°F (-40°C) to +140°F (+60°C) **BRANDING:** None

APPLICATION: Great for the recovery of waste crude oil, diesel fuel and salt water. Used for cleaning up tank bottoms and oil spills.

FEATURES:

- NBR/PVC tube is oil and gas resistant
- Very flexible and easy to handle
- All sizes are full vacuum
- Cold weather resistant
- Safety Ohm (SΩ) ground wire embedded into the hose wall to help prevent the build-up of static electricity.
 SΩ wire must be secured to ground to dissipate static electricity.

)							1					
Part	I,	.D.	C).D.	Reinf.	Max W.P. @ 68°F		Vacuum @ 68°F	We	ight		nimum I Radius	Std. Length
Number	in.	mm	in.	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
3087-0200-100	2	50.80	2.43	61.72	PVC Helix	50	3.45	29.0	0.67	1.00	4.00	101.60	100
3087-0300-100	3	76.20	3.52	89.41	PVC Helix	45	3.10	29.0	1.10	1.64	6.00	152.40	100
3087-0400-100	4	101.60	4.60	116.84	PVC Helix	38	2.62	29.0	1.84	2.74	8.20	208.30	100

DESIGN FACTOR: 3:1

Note: Vacuum is temperature dependent.

 $S\Omega$ = Safety Ohm All sizes may not be stocked in all locations. Check with customer service for availability.

4410

BLUE LOW TEMP PETROLEUM SUCTION HOSE - CORRUGATED

CONSTRUCTION: Tube is nitrile, black and smooth, ARPM Class A. Cover is NBR/EPDM blend, blue, corrugated, ARPM Class B. Reinforcement is a two-ply synthetic fabric with a double wire helix.

TEMPERATURE: -65°F (-55°C) to +180°F (+82°C)

BRANDING: Jason logo 4410 LOW TEMP PETROLEUM SUCTION -65°F (-55°C) 150 PSI WP 10.35 BAR. White mylar longitudinal stripe.

APPLICATION: The transfer of petroleum products, including gasoline under pressure or gravity flow.

FEATURES:

- Cover is resistant to weathering, abrasion, and the exposure to oil.
- Compounded to resist extreme cold temperatures to -65°F.
- Remains flexible, even under extreme cold temperatures.
- All sizes are full vacuum.

DESIGN FACTOR: 3:1

Part	I.D.		O.D.		Reinf.	-	x W.P. 68°F	Vacuum @ 68°F (in	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4410-0300-100	3	76.20	3.55	90.17	2	150	10.35	29.0	1.83	2.72	6.00	151.20	100
4410-0400-100	4	101.60	4.59	116.59	2	150	10.35	29.0	2.39	3.56	9.00	226.80	100

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

4414

NITRILE PETROLEUM SUCTION HOSE - 300 PSI

CONSTRUCTION: Tube nitrile, smooth and black. ARPM Class A. Cover is nitrile/PVC blend, ARPM Class B. Reinforcement is two-ply synthetic fabric with a dual wire helix. TEMPERATURE: -25°F (-32°C) to +200°F (+93°C)

BRANDING: Jason logo 4414 PETROLEUM SUCTION WP 300 PSI 20.70 BAR. Red mylar longitudinal stripe. **APPLICATION:** For the transfer of petroleum products, including gasoline under pressure and gravity flow.

FEATURES:

- HD construction that handles up to 300 PSI applications
- Cover is resistant to weathering and abrasion
- Heat and ozone resistant
- All sizes are full vacuum

Part Number	I.D.		O.D.		Reinf.	-	x W.P. 68°F	Vacuum @ 68°F (in	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4414-0100-100	1	25.40	1.46	37.08	2	300	20.70	29.0	0.53	0.79	3.50	88.90	100
4414-0125-100	1-1/4	31.75	1.73	43.94	2	300	20.70	29.0	0.70	1.04	4.00	101.60	100
4414-0150-100	1-1/2	38.10	2.00	50.80	2	300	20.70	29.0	0.92	1.37	5.00	127.00	100
4414-0200-100	2	50.80	2.50	63.50	2	300	20.70	29.0	1.27	1.89	8.00	203.20	100
4414-0200-200	2	50.80	2.50	63.50	2	300	20.70	29.0	1.27	1.89	8.00	203.20	200
4414-0250-100	2-1/2	63.50	3.11	78.99	2	300	20.70	29.0	1.66	2.47	10.00	254.00	100
4414-0300-100	3	76.20	3.62	91.95	2	300	20.70	29.0	2.19	3.26	12.00	304.80	100
4414-0300-200	3	76.20	3.62	91.95	2	300	20.70	29.0	2.19	3.26	12.00	304.80	200
4414-0400-100	4	101.60	4.76	120.90	2	300	20.70	29.0	2.89	4.30	17.00	431.80	100
4414-0400-200	4	101.60	4.76	120.90	2	300	20.70	29.0	2.89	4.30	17.00	431.80	200
4414-0600-100	6	152.40	6.91	175.51	2	300	20.70	29.0	6.47	9.96	27.00	685.80	100
4414-0800-020	8	203.20	8.98	228.00	2	300	20.70	29.0	6.92	10.30	48.00	1219.20	20

DESIGN FACTOR: 3:1

All sizes may not be stocked in all locations. Check with customer service for availability.

4420

NITRILE PETROLEUM SUCTION HOSE - 150 PSI

CONSTRUCTION: Tube nitrile, smooth and black. ARPM Class A. Cover is NBR/PVC blend, ARPM Class B. Reinforcement is two synthetic plies with a dual wire helix.

TEMPERATURE: -31°F (-35°C) to +176°F (+80°C)

BRANDING: Jason logo 4420 PETROLEUM SUCTION WP 150 PSI 10.35 BAR. Red mylar longitudinal stripe. **APPLICATION:** For suction or discharge of petroleumbased products in truck and car operations.

FEATURES:

- Increased flexibility due to the dual wire helix
- Nitrile tube is highly oil resistant. Enables hose to handle petroleum products having an aromatic content up to 50%
- Weather and ozone resistant

Part Number ─	I.D.		O.D.		Reinf. Plies		(W.P. 68°F	Vacuum @ 68°F	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Piles	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4420-0075-100	3/4	19.05	1.14	28.96	2	150	10.35	29.0	0.36	0.54	4.00	101.60	100
4420-0100-100	1	25.40	1.38	35.00	2	150	10.35	29.0	0.49	0.73	6.00	152.40	100
4420-0125-100	1-1/4	31.75	1.69	42.93	2	150	10.35	29.0	0.81	1.21	6.00	152.40	100
4420-0150-050	1-1/2	38.10	2.00	50.80	2	150	10.35	29.0	0.91	1.35	6.50	165.10	50
4420-0150-100	1-1/2	38.10	2.00	50.80	2	150	10.35	29.0	0.91	1.35	6.50	165.10	100
4420-0200-100	2	50.80	2.52	64.01	2	150	10.35	29.0	1.14	1.70	8.00	203.20	100
4420-0200-200	2	50.80	2.52	64.01	2	150	10.35	29.0	1.14	1.70	8.00	203.20	200
4420-0250-100	2-1/2	63.50	3.06	77.72	2	150	10.35	29.0	1.76	2.62	12.00	304.80	100
4420-0300-100	3	76.20	3.54	89.92	2	150	10.35	29.0	2.42	3.60	16.00	406.40	100
4420-0300-200	3	76.20	3.54	89.92	2	150	10.35	29.0	2.42	3.60	16.00	406.40	200
4420-0400-100	4	101.60	4.60	116.84	2	150	10.35	29.0	2.69	4.00	18.00	457.20	100
4420-0400-200	4	101.60	4.60	116.84	2	150	10.35	29.0	2.69	4.00	18.00	457.20	200
4420-0600-020	6	152.40	6.86	174.24	2	150	10.35	29.0	6.28	9.35	30.00	762.00	20
4420-0600-100	6	152.40	6.86	174.24	2	150	10.35	29.0	6.28	9.35	30.00	762.00	100
4420-0800-020	8	203.20	8.90	226.06	2	150	10.35	29.0	7.12	10.60	48.00	1219.20	20
4420-0800-050	8	203.20	8.90	226.06	2	150	10.35	29.0	7.12	10.60	48.00	1219.20	50

DESIGN FACTOR: 3:1

All sizes may not be stocked in all locations. Check with customer service for availability.

4421

TANK TRUCK HOSE - RED CORRUGATED

CONSTRUCTION: Tube is a nitrile blend, smooth, ARPM Class A. Cover is CR/NBR/PVC, ARPM Class B, corrugated and red. Reinforcement is two synthetic plies with a wire helix.

TEMPERATURE: -40°F (-40°C) to +180°F (+82°C) **BRANDING:** Jason logo 4421 PETROLEUM SUCTION WP 150 PSI 10.35 BAR. White mylar longitudinal stripe. 4421 PETROLEUM

APPLICATION: For the transfer of petroleum products, including gasoline under pressure, gravity flow and tank farms at oil/gas drilling sites.

FEATURES:

- Increased flexibility due to the corrugated cover
- Lightweight, easier to handle
- Cover is resistant to weathering and abrasion

DESIGN FACTOR: 3:1

Part	I.D.		O.D.		Reinf.	-	W.P. 8°F	Vacuum @ 68°F	We	ight		imum Radius	Std. Length
Number 4421-0200-100	in.	mm	in.	mm	Plies	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4421-0200-100	2	50.80	2.48	63.00	2	150	10.35	29.0	1.18	1.76	4.00	101.60	100
4421-0300-100	3	76.20	3.50	89.00	2	150	10.35	29.0	1.99	2.96	6.00	152.40	100
4421-0400-100	4	101.60	4.57	116.00	2	150	10.35	29.0	2.66	3.96	9.00	228.60	100
4421-0600-100	6	152.40	6.77	172.00	2	150	10.35	29.0	6.30	9.41	25.00	637.50	100

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

4424

NITRILE PETROLEUM SUCTION HOSE - 400 PSI - $S\Omega$

CONSTRUCTION: Tube is nitrile, black and smooth, ARPM Class A. Cover is NBR/PVC, black, ARPM Class B. Reinforcement is a two-ply synthetic fabric with a dual wire helix.

TEMPERATURE: -31°F (-35°C) to +176°F (+80°C)

BRANDING: Jason logo 4424 PETROLEUM SUCTION WP 400 PSI 27.6 BAR. Red mylar longitudinal stripe

DESIGN FACTOR: 3:1

APPLICATION: For the transfer of petroleum products, including gasoline under pressure or gravity flow (suction or discharge).

FEATURES:

- HD construction that handles up to 400 PSI applications
- Cover is resistant to weathering and abrasion
- Heat, sea water and ozone resistant
- All sizes are full vaccum
- Construction is with high tensile strength textile
- Dual copper wires to ground the hose
- Safety Ohm (SΩ) ground wire embedded into the hose wall to help prevent the build-up of static electricity.
 SΩ wire must be secured to ground to dissipate static electricity.

Part Number	I.D.		O.D.		Reinf. Plies	-	x W.P. 68°F	Vacuum @ 68°F (in	We	ight	1	imum Radius	Std. Length
Number	in.	mm	in.	mm	Files	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4424-0200-100	2	50.80	2.82	71.63	2	400	27.56	29.0	1.89	2.81	12.00	304.80	100
4424-0200-200	2	50.80	2.82	71.63	2	400	27.56	29.0	1.89	2.81	12.00	304.80	200
4424-0300-100	3	76.20	3.88	98.55	2	400	27.56	29.0	2.95	4.39	20.00	508.00	100
4424-0300-200	3	76.20	3.88	98.55	2	400	27.56	29.0	2.95	4.39	20.00	508.00	200
4424-0400-100	4	101.60	4.92	124.50	2	400	27.56	29.0	3.85	5.72	30.00	762.00	100
4424-0400-200	4	101.60	4.92	124.50	2	400	27.56	29.0	3.85	5.72	30.00	762.00	200

SΩ = Safety Ohm

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

\bigcirc DREAMFLEX™ PETROLEUM TRANSFER AND SUCTION HOSE - SΩ

CONSTRUCTION: Tube is nitrile, black and smooth, ARPM Class A oil resistance. Cover is NBR/EPDM blend, black, flat corrugated and oil resistant. Reinforcement is a synthetic textile with a dual steel helix with an anti-static copper wire.

TEMPERATURE: -40°F (-40°C) to +194°F (+90°C)

BRANDING: 4426 Jason logo DREAMFLEX™ PETROLEUM TRANSFER and SUCTION WP PSI (BAR) Red mylar longitudinal stripe. **APPLICATION:** For suction and discharge of petroleum products with aromatic content up to 50%

FEATURES:

- Extremely flexible. Superior Minimum Bend Radius
- Cover is resistant to weathering and abrasion
- Heat, ozone and salt water resistant
- Anti-static copper wire to ground the hose
- Safety Ohm (SΩ) ground wire embedded into the hose wall to help prevent the build-up of static electricity.
 SΩ wire must be secured to ground to dissipate static electricity.

Part Number	I.D.		O.D.		Reinf.		x W.P. 68°F	Vacuum @ 68°F (in	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4426-0075-100	3/4	19.10	1.18	30.00	2	250	17.24	26.0	0.34	0.51	0.75	19.00	100
4426-0100-100	1	25.40	1.50	38.00	2	250	17.24	26.0	0.51	0.76	1.00	25.00	100
4426-0150-100	1-1/2	38.10	1.93	49.00	2	250	17.24	26.0	0.65	0.97	1.50	38.00	100
4426-0200-100	2	50.80	2.41	61.20	2	250	17.24	26.0	0.93	1.38	2.00	51.00	100
4426-0250-100	2-1/2	63.50	3.03	77.00	2	200	13.79	26.0	1.35	2.01	2.50	63.50	100
4426-0300-100	3	76.20	3.54	90.00	2	200	13.79	26.0	1.64	2.45	3.00	75.20	100
4426-0400-100	4	101.60	4.57	116.00	2	150	10.35	26.0	2.40	3.59	4.00	101.60	100
4426-0600-100	6	152.40	6.75	171.6	2	150	10.35	26.0	5.73	8.5	6.00	152.40	100

DESIGN FACTOR: 4:1

4426

 $S\Omega = Safety Ohm$

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

HOT TAR AND ASPHALT SUCTION HOSE - 150 PSI

CONSTRUCTION: Tube is black and smooth ACM, that is synthetic oil, abrasion and heat resistant. Cover is a blend of synthetic elastomer compounds, black and smooth, and anti-static. Reinforcement is a two-or-four-ply high tensile cord with a steel wire dual helix for 2" and 3" and single helix for 4". **APPLICATION:** Hose is specially designed for conveying hot tar and asphalt.

FEATURES:

- Cover is resistant to weathering and abrasion
- Cover is also anti-static, oil and heat resistant

• Special tube compound is heat (up to 356°F) and abrasion resistant.

• All sizes are full vacuum.

TEMPERATURE: -22°F (-30°C) to +356°F (+180°C)
---	---

BRANDING: Jason logo 4429 HOT ASPHALT 356°F/180°C 150 PSI 4:1. Embossed brand.

DESIGN FACTOR: 4:1

Part	I.D. O.D.		.D.	Reinf. @ 68°F			Vacuum		ight	1	imum Radius	Std. Length	
Number	in.	mm	in.	mm	Plies	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4429-0200-100	2	50.80	2.72	69.00	2	150	10.35	29.0	1.77	2.65	10.00	254.00	100
4429-0300-100	3	76.20	3.82	97.00	2	150	10.35	29.0	2.82	4.21	15.00	380.00	100
4429-0400-100	4	101.60	4.80	122.00	4	150	10.35	29.0	3.82	5.70	20.00	510.00	100

All sizes may not be stocked in all locations. Check with customer service for availability.

OILFIELD PETRO WASTE SUCTION HOSE

CONSTRUCTION: Tube is an NBR/SBR blend, black and smooth, oil resistant. Cover is an NBR/ PVC blend, black, flat corrugated w/ cloth impression, oil, abrasion, weather and ozone resistant. Reinforcement is a high tensile cord with a dual steel wire helix.

TEMPERATURE: -22°F (-30°C) to +185°F (+85°C)

BRANDING: Jason logo 4436 OILFIELD PETRO WASTE SUCTION WP (150PSI) 10.35 BAR. Blue mylar longitudinal stripe.

APPLICATION: Designed to transfer petroleum waste, sediments, sludge, diluted mild chemi cals, brine and water in oil filled tank and waste pit recovery applications. Not suitable for refined petroleum products or high concentrations of chemicals.

FEATURES:

- Cover is resistant to weathering and abrasion
- Heat and ozone resistant
- Light, flexible, easy-to-use

Dual steel wires to ground the hose, must be attached to fittings if application requires - See page 16

Part Number	I.D.		O.D.		Reinf.	-	x W.P. 68°F	Vacuum @ 68°F (in	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4436-0200-100	2	50.80	2.48	63.00	2	150	10.35	26.0	1.04	1.55	5.00	128.00	100
4436-0300-100	3	76.20	3.50	89.00	2	150	10.35	26.0	1.75	2.60	7.50	190.00	100
4436-0400-100	4	101.60	4.53	115.00	2	150	10.35	26.0	2.19	3.25	10.00	255.00	100
4436-0600-020	6	152.40	6.65	169.00	2	150	10.35	26.0	4.41	6.57	24.00	608.00	20
4436-0600-050	6	152.40	6.65	169.00	2	150	10.35	26.0	4.41	6.57	24.00	608.00	50
4436-0600-100	6	152.40	6.65	169.00	2	150	10.35	26.0	4.41	6.57	24.00	608.00	100
4436-0800-020	8	203.20	8.82	224.00	2	150	10.35	26.0	7.36	10.97	32.00	812.00	20
4436-0800-050	8	203.20	8.82	224.00	2	150	10.35	26.0	7.36	10.97	32.00	812.00	50

DESIGN FACTOR: 3:1

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

5201

DIAMOND OILFIELD SPECIAL 5K HOSE RED 💞

CONSTRUCTION: Tube is an oil resistant synthetic rubber The cover (smooth) is abrasion, ozone, oil and weather resistant synthetic rubber. Reinforcement is two wire braid of high tensile steel wire.

TEMPERATURE: -40°F (-40°C) to +212°F (+100°C)

APPLICATION: This hose has multiple applications where a 5,000 PSI working pressure and a 4:1 safety factor are required. One use in the oilfield is for the charging circuit for accumulators attached to the BOP systems.

DIAMOND OII

FEATURES:

- Abrasion, ozone and weather resistant cover
- Extremely flexible
- Can be used in a variety of applications
- Red Diamond[®] quality

STANDARD LENGTHS: 500 ft, reels **SAFETY FACTOR: 4:1**

BRANDING: Jason logo 5201 Red Diamond Oilfield Special
5K Hose 1/2" (12.7mm) I.D. 5000 PSI 345 BAR) WP
Flame Resistant MSHA code
Clear mylar stripe with red printing

Part	I.	I.D. O.D.		Reinf.	Reini. @ 68°F		Vacuum @ 68°F	Wei	ight		imum Radius	St Len		
Number	in.	mm	in.	mm	Braids	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	ft.	m
5201-08-500	1/2	12.70	0.80	20.30	2	5000	345	n/a	0.36	0.53	3.15	80.00	500	152.4

Use the JB12/12 series hydraulic couplings when making assemblies. Coupling information can be found in the Jason Industrial Hydraulic Catalog (HHG-01).

5205

RED 🏶 DIAMOND RIG HOSE - 4S

CONSTRUCTION: Tube is an oil resistant synthetic rubber The cover (wrapped) is abrasion, ozone, oil and weather resistant synthetic rubber. Reinforcement is four spirals of high tensile steel wire.

TEMPERATURE: -40°F (-40°C) to +212°F (+100°C)

APPLICATION: Durable 4-spiral construction which meets or exceeds the demanding EN856 4SH specifications, which can be used in a variety of drilling rig applications as well as other high pressure hydraulic applications.

BRANDING: Jason logo 5205 Red Diamond Rig Hose 4SH ID in. (mm) WP PSI (BAR) Flame Resistant MSHA code Clear mylar stripe with red lettering

FEATURES:

- Abrasion, ozone and weather resistant cover
- Meets EN856 4SH Specifications
- Can be used in a variety of high pressure applications
- Uses a variety of couplings styles including API male pipe ends in sizes -24 and -32
- Red Diamond[®] quality

STANDARD LENGTHS: 150 ft. coils SAFETY FACTOR: 4:1

Part Number	I.	D.	0	.D.	Reinf. Spirals	₩ 00 F		Vacuum		Weight		Minimum Bend Radius		d. Igth
Number	in.	mm	in.	mm	Spirais	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	ft.	m
5205-24-150	1-1/2	38.10	2.11	53.50	4	4205	290	n/a	2.23	3.32	22.00	560.00	150	45.7
5205-32-150	2	50.80	2.68	68.10	4	3625	250	n/a	3.14	4.67	27.50	700.00	150	45.7

Use the JB60/60 series hydraulic couplings when making assemblies. Coupling information can be found in the Jason Industrial Hydraulic Catalog (HHG-01).

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed. **PETROLEUM HOSE**

5210

RED 🐨 DIAMOND HOT OILER HOSE

CONSTRUCTION: Tube is an oil resistant synthetic rubber The pin pricked cover (wrapped) is abrasion, ozone, oil and weather resistant synthetic rubber. Reinforcement is 2-braids of high tensile steel wire.

TEMPERATURE: +275°F continuously (+135°C), +300°F intermittently (+150°C) APPLICATION: Durable 2-braid construction which meets the requirements of demanding hot oiler applications.

FEATURES:

- Abrasion, ozone and weather resistant cover
- Handles 275°F temperatures continuously and 300°F intermittently
- Red Diamond[®] quality

BRANDING: Jason logo 5210 Red Diamond Hot Oiler Hose ID in. (mm) WP PSI (BAR) Flame Resistant MSHA Code Clear mylar stripe with red lettering

STANDARD LENGTHS: 130 & 150 ft. coils **SAFETY FACTOR:** 4:1

Part Number	I.	D.	С).D.	Reinf. Braids	0	x W.P. 68°F	Vacuum @ 68°F	Weight			imum Radius	Std. Length	
Number	in.	mm	in.	mm	braius	PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	ft.	m
5210-24-130	1-1/2	38.10	2.13	54.00	2	2300	160	n/a	1.52	2.25	19.70	500.00	130	39.6
5210-24-150	1-1/2	38.10	2.13	54.00	2	2300	160	n/a	1.52	2.25	19.70	500.00	150	45.7

Use the JB12/12 series hydraulic couplings when making assemblies. Compatible with 6024-2424 (male pipe API) hydraulic coupling. Coupling information can be found in our Hydraulic Product Guide.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

PETROLEUM HOSE

4J30-R11

LOW PERMEATION FUEL HOSE

CONSTRUCTION: Low permeation multilayer tube NBR/THV/NBR, aramid reinforcement, high temperature oil resistant cover.

TEMPERATURE: -40°F (-40°C) to +257°F (+125°C)

BRANDING: 4J30R11-ID SAE 30R11AET2 EPA CERT # Recycling Codes Made in USA

DESIGN FACTOR: 4:1

APPLICATION: For use in gasoline and diesel fuel systems where low permeation and resistance to modern oxygenated fuels is required.

FEATURES:

- Low permeation tube with THV barrier
- Tube has highly fuel resistant NBR innermost layer for reliable sealing with fittings.
- Ozone and weather resistant cover
- Full EPA compliance certification
- Meets SAE J30R11 requirements and exceeds SAE J30R7

Part	I.D.		O.D.		Reinf.	Max W.P. @ 68°F		Vacuum @ 68°F (in	Weight		Minimum Bend Radius		Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4J30R11-0025-250	1/4	6.4	0.52"	13.2	2 spiral	145	10	n/a	0.23	0.34	2.6"	66	250 ft
4J30R11-0031-250	5/16	7.9	0.56"	14.2	2 spiral	145	10	n/a	0.26	0.39	3.0"	76	250 ft

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

PETROLEUM HOSE

We disclaim any liability for use of our products in applications other than which they are designed.

All sizes may not be stocked in all locations. Check with customer service for availability.

FOR THE TRANSFER OF
SATURATED STATED STA

Hoses are constantly being upgraded. Jason Industrial reserves the right to make changes in construction without prior notice.

STEAM HOSE

EPDM STEAM HOSE

APPLICATION: For the conveyance of steam in

and processing industries.

chemical/petroleum, food, lumber, pulp

FEATURES:

- High working pressure
- High temperature rating
- Cover is weather and ozone resistant
- Cover is pin-pricked to allow venting to eliminate blistering and cover separation

Number		D.	O.D.		Reinf.	Max W.P. @ 68°F		Vacuum @ 68°F (in	in		Minimum Bend Radius		Std. Length	
Number	in.	mm	in.	mm	Plies	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)	
4815-0050-050	1/2	12.70	1.00	25.40	2	250	17.25	n/a	0.40	0.60	5.90	150.00	50	
4815-0050-100	1/2	12.70	1.00	25.40	2	250	17.25	n/a	0.40	0.60	5.90	150.00	100	
4815-0075-050	3/4	19.05	1.25	31.75	2	250	17.25	n/a	0.51	0.76	8.30	210.00	50	
4815-0075-100	3/4	19.05	1.25	31.75	2	250	17.25	n/a	0.51	0.76	8.30	210.00	100	
4815-0100-050	1	25.40	1.50	38.10	2	250	17.25	n/a	0.67	1.00	11.00	280.00	50	
4815-0100-100	1	25.40	1.50	38.10	2	250	17.25	n/a	0.67	1.00	11.00	280.00	100	
4815-0125-050	1-1/4	31.75	1.81	46.04	2	250	17.25	n/a	0.87	1.29	14.00	355.00	50	
4815-0125-100	1-1/4	31.75	1.81	46.04	2	250	17.25	n/a	0.87	1.29	14.00	355.00	100	
4815-0150-050	1-1/2	38.10	2.13	54.61	2	250	17.25	n/a	1.11	1.65	16.50	420.00	50	
4815-0150-100	1-1/2	38.10	2.13	54.61	2	250	17.25	n/a	1.11	1.65	16.50	420.00	100	
4815-0200-050	2	50.80	2.64	67.07	2	250	17.25	n/a	1.80	2.68	22.00	560.00	50	
4815-0200-100	2	50.80	2.64	67.07	2	250	17.25	n/a	1.80	2.68	22.00	560.00	100	
4815-0300-050	3	76.20	3.81	96.84	2	250	17.25	n/a	3.17	4.72	30.00	762.00	50	

DESIGN FACTOR: 10:1

TEMPERATURE: To +450°F (+232°C)

BRANDING: Jason logo 4815 EPDM WP 250 PSI

CONSTRUCTION: The tube and cover are EPDM. The

plies of steel wire.

17.25 BAR. DRAIN AFTER USE.

Reverse white mylar longitudinal stripe.

cover is pin-pricked with fabric

impression. Reinforcement is two

4815

WARNING! Do not use Universal Couplings or Cam and Groove Couplings with Steam Hose.

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

We disclaim any liability for use of our products in applications other than which they are designed.

∕∕∖ WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov 87

STEAM HOSE

4816

EPDM RED STEAM HOSE

O JASON 4816 1.08 112" SILA

CONSTRUCTION: The tube and cover are EPDM. The cover is pin-pricked with a fabric impression. Reinforcement is two braids of steel wire.

TEMPERATURE: -40°F (-40°C) to +403°F (+206°C)

APPLICATION: For the conveyance of steam in chemical/ petroleum, food, lumber, pulp and processing industries.

DESIGN FACTOR: 10:1

Approved for use with Jason 12 Series hose couplings. See Hydraulic Hose guide for more information.

FEATURES:

- High working pressure
- High temperature rating
- Cover is pin-pricked to allow venting to eliminate blistering and cover separation
- Abrasion, heat, steam ozone and weather resistant cover
- Uses Jason 12 Series Hose Couplings

BRANDING: Jason logo 4816 Hose ID STEAM EPDM WP 250 PSI 17.25 BAR DRAIN AFTER USE, clear mylar longitudinal stripe w/black lettering.

Part	Part I.D. Number		С	OD Re		Max W.P. @68°F		Vacuum @68°F	Weight		MBR		Std. Lengths	
Number	in.	mm	in.	mm	Braids	PSI	BAR	@00 F	lb./ft.	KG/m	in.	mm	ft.	m
4816-0050-150	1/2	12.70	0.98	25.00	2	250	17.25	n/a	0.40	0.60	7.10	180.00	150	45.7
4816-0075-150	3/4	19.05	1.26	32.00	2	250	17.25	n/a	0.51	0.76	9.45	240.00	150	45.7
4816-0100-150	1	25.40	1.52	38.50	2	250	17.25	n/a	0.67	1.00	11.80	300.00	150	45.7
4816-0150-150	1-1/2	38.10	2.05	52.00	2	250	17.25	n/a	1.11	1.65	19.70	500.00	150	45.7
4816-0200-150	2	50.80	2.64	67.00	2	250	17.25	n/a	1.80	2.68	25.60	650.00	150	45.7

WARNING! Do not use Universal Couplings or Cam and Groove Couplings with Steam Hose. **MBR = Minimum Bend Radius**

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

STEAM HOSE

STEAM HOSE SAFETY RECOMMENDATIONS

Handling steam is a very hazardous situation. Using care and some safety precaution can minimize or eliminate personal or property damage.

SELECTING AND USING STEAM HOSE

- 1. Make sure steam hose is identified as a steam hose. It should be branded as such, stating working pressure and temperature rating.
- 2. Make sure working pressure and temperature is not exceeded.
- 3. Do not allow hose to remain under pressure when not in use.
- Avoid excess bending or flexing of hose near the coupling. Straight line operation is preferred. If bends are necessary as a part of operation, spring guards may help.
- 5. Be sure and use recommended steam hose couplings and clamps on hose.

MAINTENANCE OF STEAM HOSE

- 1. Periodic inspection of hose should include looking for cover blisters and lumps.
- 2. Check for kinked areas that could damage hose.
- 3. Drain hose after each use to avoid tube damage before hose is put back in operation, to avoid "popcorning" of the tube.
- 4. Check tightness of clamps and bolts after each use.
- 5. Check to see if clamp halves are touching. If they are, recouple hose with smaller clamps to ensure proper tightness or grip around hose.
- 6. Do not store hose over hooks.
- 7. Steam hose laying on metal racks or installed around steel piping will dry out the hose, causing tube and cover cracking.

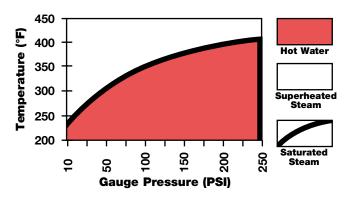
CORROSIVE STEAM

When the water used to generate steam contains dissolved air, oxygen or carbon dioxide, then these gases end up as contaminants in the steam. At high temperatures of steam, both oxygen and carbon dioxide are extremely corrosive.

Carbon dioxide is acidic and therefore attacks metals, whereas the oxygen corrodes metals and oxidizes rubbers. Corrosion of metals in the presence of both oxygen and acids is forty times faster than with either alone. Boiler water is therefore normally treated not only to remove the "hardness," which could cause "furring" of the boiler, but also to remove dissolved oxygen and carbon dioxide and to ensure that the steam is not only non-acidic, but even slightly alkaline. Boiler water treatment is a specialized subject beyond the scope of this technical sheet, but correct steam generation is important.

DETERIORATION OF STEAM HOSE

Like all rubber products, steam hoses have a finite life and are subject to gradual deterioration with use. However, it sometimes happens that hoses which have been giving a good life suddenly start failing without apparent reason. In such cases, it is often a change in the steam conditions causing a rapid acceleration of a normal failure mode. It is therefore useful to consider how steam hoses normally last and thus how the condition of the steam affects hose life.

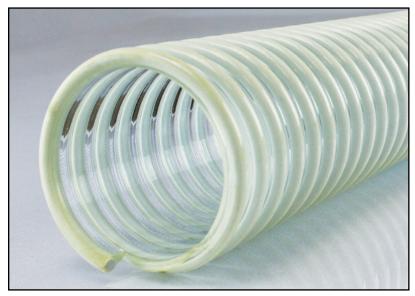

Reprinted from ARPM-11-1 Steam Hose

SELECTING AND USING STEAM HOSE

GAUGE	PRESSURE	TEMPE	RATURE
PSI	BAR	°C	°F
25	1.73	130	267
30	2.07	134	274
35	2.42	138	281
40	2.76	141	287
45	3.11	144	292
50	3.45	148	298
60	4.14	153	307
70	4.83	158	316
80	5.52	162	324
90	6.21	166	330
100	6.90	170	338
120	8.28	177	350
140	9.66	182	361
160	11.04	188	371
180	12.42	193	379
200	13.80	198	388
225	15.53	203	397
250	17.25	208	406
275	18.98	212	414
300	20.70	216	422
325	22.43	221	429
350	24.15	225	437

The chart represents the three forms of water when subjected to heat and pressure. Use only hoses specifically designed for the application.

GAUGE PRESSURE PSI	TEMPERATURE OF SATURATED STEAM (°F)
10	239
25	267
50	298
75	320
100	338
125	353
150	366
175	377
200	388
225	397
250	406


FOR THE TRANSFER OF WATER, WASHDOWN JETTING & IRRIGATION

SERIES		PAGE
3074	HD Sub-Zero Cold Weather Clear PVC Suction Hose	91
3076	Heavy Duty PVC Suction and Transfer Hose	92
3080	NBR/PVC Suction Hose	93
4352	Rubber 2-Ply Water Discharge Hose	94
4354	Rubber 4-Ply Water Discharge Hose	95
4358	Nitrile/PVC Oil Resistant Discharge Hose - Yellow	96
4359	Nitrile/PVC Oil Resistant Discharge Hose - Black	97
4380	Thermally Non-Conductive Furnace Door Hose	98
4450	Rubber Water Suction Hose	99
4502	Blue PVC Water Discharge Bulk Hose & Assemblies	100
4504	Wine Red PVC Water Discharge Hose & Assemblies - Medium Duty	101
4515	Red PVC Water Discharge Hose - HD	102
4601	Green PVC Water Suction Hose	103
4615	Clear/White Helix PVC Water Suction Hose	104
4703	HD DJ Mill Discharge Hose & Assemblies	105
4705	Municipal Grade SJ Mill Discharge Hose & Assemblies	106
4735	MSHA Fire Hose Assemblies	107
5823	Pressure Washer Assemblies	108

Hoses are constantly being upgraded. Jason Industrial reserves the right to make changes in construction without prior notice.

3074 HD SUB-ZERO COLD WEATHER CLEAR PVC SUCTION HOSE

CONSTRUCTION: PVC tube with sturdy clockwise PVC helix.

TEMPERATURE: -40°F (-40°C) to +140°F (+60°C)

APPLICATION: Heavy duty water suction and transfer for rental, construction and trash pumps in sub-zero weather conditions.

FEATURES:

- Clear visual flow
- -40°F cold weather resistance
- Sub-zero flexibility
- Easy to drag with "Go-Glide" external clockwise PVC helix
- Vacuum up to 29" of Hg

Part Number		I.D.		O.D.		Max W.P. @ 68°F		Vacuum @ 68°F	We	ight		imum Radius	Std. Length
number	in.	mm	in.	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
3074-0100-100	1	25.4	1.25	31.8	PVC Helix	50	3.45	29.0	0.15	0.22	1.50	38.1	100
3074-0125-100	1-1/4	31.75	1.53	38.4	PVC Helix	50	3.45	29.0	0.18	0.27	2.00	50.8	100
3074-0150-100	1-1/2	38.1	1.80	45.7	PVC Helix	45	3.10	29.0	0.28	0.42	2.50	63.5	100
3074-0200-100	2	50.8	2.36	59.9	PVC Helix	40	2.76	29.0	0.44	0.65	3.00	76.2	100
3074-0250-100	2-1/2	63.5	2.85	72.4	PVC Helix	35	2.41	29.0	0.60	0.89	4.50	114.3	100
3074-0300-100	3	76.2	3.51	88.9	PVC Helix	35	2.41	29.0	0.85	1.26	6.00	152.4	100
3074-0400-100	4	101.6	4.63	117.6	PVC Helix	30	2.07	29.0	1.34	1.99	9.00	228.6	100
3074-0500-100	5	127.0	5.63	143.0	PVC Helix	30	2.07	28.0	2.20	3.27	10.00	254.0	100
3074-0600-100	6	152.4	6.85	174.0	PVC Helix	30	2.07	28.0	2.72	4.05	11.00	279.4	100
3074-0800-020	8	203.2	9.06	230.1	PVC Helix	30	2.07	28.0	4.84	7.20	16.00	406.4	20
3074-1000-020	10	254.0	11.25	285.8	PVC Helix	30	2.07	28.0	7.06	10.51	30.00	762.0	20
3074-1200-020	12	304.8	13.30	337.8	PVC Helix	14	0.97	26.0	9.74	14.49	40.00	1016.0	20

DESIGN FACTOR: 3:1

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

3076

HEAVY-DUTY PVC SUCTION AND TRANSFER HOSE

CONSTRUCTION: PVC tube and sturdy clockwise PVC helix with high tensile strength polyester yarn reinforcement.

TEMPERATURE: -13°F (-25°C) to +140°F (+60°C)

APPLICATION: HD fish suction and transfer. Also HD water suction and transfer for rental, construction, trash pumps and moving water at fracking sites.

FEATURES:

- Clear visual flow
- Higher transfer pressures
- Excellent flexibility
- Easy to drag with "Go-Glide" external clockwise PVC helix
- Vacuum up to 29" of Hg

Part	I.	I.D.		O.D.		Max W.P.@ 68°F		Vacuum @ 68°F (in	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Braids	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
3076-0150-100	1-1/2	38.10	2.03	51.56	1	110	7.58	29.0	0.47	0.70	2.50	63.50	100
3076-0200-100	2	50.80	2.60	66.04	1	100	6.89	29.0	0.69	1.03	4.00	101.60	100
3076-0250-100	2-1/2	63.50	3.01	76.45	1	100	6.89	29.0	0.74	1.10	5.00	127.00	100
3076-0300-100	3	76.20	3.70	93.98	1	100	6.89	28.0	1.13	1.68	6.00	152.40	100
3076-0400-100	4	101.60	4.78	121.41	1	80	5.52	28.0	1.74	2.59	7.00	177.80	100
3076-0500-100	5	127.00	6.04	153.42	1	80	5.52	28.0	2.99	4.45	9.00	228.60	100
3076-0600-020	6	152.40	7.17	182.12	1	70	4.83	28.0	3.88	5.77	9.00	228.60	20
3076-0600-100	6	152.40	7.17	182.12	1	70	4.83	28.0	3.88	5.77	10.00	254.00	100
3076-0800-020	8	203.20	9.34	237.24	1	60	4.14	28.0	5.55	8.26	16.00	406.40	20
3076-1000-020	10	254.00	11.63	295.40	1	40	2.76	28.0	8.90	13.24	25.00	635.00	20
3076-1200-020	12	304.80	13.80	350.52	1	28	1.93	28.0	10.30	15.38	46.00	1168.00	20

DESIGN FACTOR: 3:1

Note: Discharge pressures and vacuum are temperature dependent.

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including DINP, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

NBR/PVC SUCTION HOSE

CONSTRUCTION: NBR/PVC tube with polyethylene clockwise helix.

TEMPERATURE: -40°F (-40°C) to +140°F (+60°C)

APPLICATION: Septic, waste water and liquid manure handling; agricultural liquid fertilizers and standard duty water suction, as well as suction and transfer for rental, construction and trash pumps.

FEATURES:

- -40°F cold weather resistance
- Sub-zero flexibility
- Clockwise polyethylene helix
- Vacuum up to 29" of Hg.

Part	I.D.		O.D.		Reinf.	Max W.P. @ 68°F		Vacuum @ 68°F	Weight		Minimum Bend Radius		Std. Length
Number	in.	mm	in.	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
3080-0150-100	1-1/2	38.10	1.85	46.99	PE Helix	50	3.45	29.0	0.41	0.61	3.80	96.50	100
3080-0200-100	2	50.80	2.43	61.72	PE Helix	50	3.45	29.0	0.67	1.00	5.50	139.70	100
3080-0300-100	3	76.20	3.52	89.41	PE Helix	45	3.10	29.0	1.10	1.64	7.50	190.50	100
3080-0400-100	4	101.60	4.60	116.84	PE Helix	38	2.62	29.0	1.84	2.74	11.50	292.10	100
3080-0600-100	6	152.40	6.81	172.97	PE Helix	23	1.59	28.0	3.23	4.81	20.00	508.00	100

DESIGN FACTOR: 3:1

3080

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

4352

RUBBER 2-PLY WATER DISCHARGE HOSE

CONSTRUCTION: Tube and cover are SBR, black. Reinforcement is a two-ply synthetic fabric.

TEMPERATURE: -25°F (-32°C) to +185°F (+85°C)

DESIGN FACTOR: 3:1

BRANDING: Jason logo 4352 I.D. WATER DISCHARGE WP PSI BAR.

Yellow mylar longitudinal stripe.

APPLICATION: For general construction, mines and water discharge and equipment rental.

FEATURES:

- Cover compound makes it resistant to weather and ozone
- Lays flat and rolls up for easy storage
- Ideal for standard working pressure

Part Number -		.D.	O	.D.	Reinf. Plies	Max W.P. @ 68°F		Vacuum @ 68°F (in	We	ight	1	imum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4352-0150-100	1-1/2	38.10	1.81	45.97	2	150	10.35	n/a	0.60	0.89	15.00	380.00	100
4352-0200-100	2	50.80	2.31	58.67	2	150	10.35	n/a	0.84	1.25	20.00	508.00	100
4352-0250-100	2-1/2	63.50	2.75	69.85	2	150	10.35	n/a	0.91	1.35	25.00	635.00	100
4352-0300-100	3	76.20	3.38	85.85	2	150	10.35	n/a	1.12	1.67	30.00	762.00	100
4352-0400-100	4	101.60	4.37	111.00	2	150	10.35	n/a	1.25	1.86	40.00	1016.00	100
4352-0500-100	5	127.00	5.51	139.95	2	150	10.35	n/a	2.29	3.41	50.00	1270.00	100
4352-0600-050	6	152.40	6.50	165.10	2	150	10.35	n/a	3.45	5.13	60.00	1524.00	50
4352-0600-100	6	152.40	6.50	165.10	2	150	10.35	n/a	3.45	5.13	60.00	1524.00	100
4352-0800-050	8	203.20	8.50	215.90	2	100	6.89	n/a	4.30	6.40	80.00	2030.00	50
4352-1000-050	10	254.00	10.50	266.70	2	100	6.89	n/a	5.40	8.04	100.00	2450.00	50
4352-1200-050	12	304.80	12.50	317.50	2	100	6.89	n/a	6.75	10.04	120.00	3058.00	50

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

WATER HOSE

4354

RUBBER 4-PLY WATER DISCHARGE HOSE

- **CONSTRUCTION:** Tube and cover are SBR, black. Reinforcement is a four-ply synthetic fabric.
- **TEMPERATURE:** -25°F (-32°C) to +185°F (+85°C)
- **BRANDING:** Jason logo 4354 I.D. WATER DISCHARGE WP PSI BAR. Yellow mylar longitudinal stripe.
- **APPLICATION:** For water discharge in construction, mines & quarries. Also for heavy duty equipment rental.

DESIGN FACTOR: 3:1

FEATURES:

- Cover compound makes it resistant to weather and ozone
- Lays flat and rolls up for easy storage
- Ideal for high working pressure water discharge applications
- Excellent for tough, rugged operating conditions

Part Number	I.D.		0.	O.D. Reinf. Plies		Max W.P. @ 68°F		Vacuum @ 68°F (in	Weight		Minimum Bend Radius		Std. Length
Number	in.	mm	in.	mm	Files	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4354-0150-100	1-1/2	38.10	2.00	50.80	4	250	17.24	n/a	0.83	1.24	15.00	380.00	100
4354-0200-100	2	50.80	2.56	65.02	4	250	17.24	n/a	1.11	1.65	20.00	508.00	100
4354-0250-100	2-1/2	63.50	3.07	77.98	4	250	17.24	n/a	1.24	1.85	25.00	635.00	100
4354-0300-100	3	76.20	3.58	90.93	4	225	15.51	n/a	1.50	2.23	30.00	762.00	100
4354-0400-050	4	101.60	4.61	117.09	4	200	13.79	n/a	1.85	2.75	40.00	1016.00	50
4354-0400-100	4	101.60	4.61	117.09	4	200	13.79	n/a	1.85	2.75	40.00	1016.00	100
4354-0600-100	6	152.40	6.57	166.88	4	150	10.35	n/a	3.90	5.80	60.00	1524.00	100
4354-0800-050	8	203.20	8.66	219.96	4	125	8.62	n/a	5.25	7.81	80.00	2030.00	50
4354-1000-050	10	254.0	10.66	270.76	4	125	8.62	n/a	6.29	9.36	100.00	2540.00	50
4354-1200-050	12	304.80	12.68	322.07	4	125	8.62	n/a	7.09	10.54	120.00	3048.00	50
4354-1400-050	14	355.60	14.61	371.00	4	100	6.89	n/a	7.62	11.32	120.00	3048.00	50

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

- Ve disclaim any liability for use of our products in applications other than which they are designed.
- WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

4358 NITRILE/PVC OIL RESISTANT DISCHARGE HOSE - YELLOW

CONSTRUCTION: Tube and cover are bright yellow

NBR/PVC.

APPLICATION: For use in industrial washdown, irrigation,

general dewatering, pump discharge and drainage.

TEMPERATURE: -20°F (-29°C) to +210°F (+99°C)

FEATURES:

- Up to 250 PSI (17.24 BAR) working pressure
- Oil resistant tube and cover
- Resists heat, cold, ozone and UV light
- Lightweight and flexible

DESIGN FACTOR: 3:1

BRANDING: None

Part Number	I.	.D.	Wall Thickness		Reinf. Plies		@ 00 T		Weight		Std. Length
Number	inch	mm	inch	mm	Files	PSI	BAR	of Hg)	lb./ft.	KG/m	(feet)
4358-0075-050	3/4	19.05	0.110	2.79	n/a	250	17.25	n/a	0.10	0.15	50
4358-0075-100	3/4	19.05	0.110	2.79	n/a	250	17.25	n/a	0.10	0.15	100
4358-0100-050	1	25.40	0.110	2.79	n/a	250	17.25	n/a	0.14	0.21	50
4358-0100-100	1	25.40	0.110	2.79	n/a	250	17.25	n/a	0.14	0.21	100
4358-0150-050	1-1/2	38.10	0.110	2.79	n/a	250	17.25	n/a	0.26	0.39	50
4358-0150-100	1-1/2	38.10	0.110	2.79	n/a	250	17.25	n/a	0.26	0.39	100
4358-0200-050	2	50.80	0.110	2.79	n/a	250	17.25	n/a	0.34	0.51	50
4358-0200-100	2	50.80	0.110	2.79	n/a	250	17.25	n/a	0.34	0.51	100
4358-0250-050	2-1/2	63.50	0.110	2.79	n/a	250	17.25	n/a	0.47	0.70	50
4358-0250-100	2-1/2	63.50	0.110	2.79	n/a	250	17.25	n/a	0.47	0.70	100
4358-0300-050	3	76.20	0.110	2.79	n/a	250	17.25	n/a	0.65	0.97	50
4358-0300-100	3	76.20	0.110	2.79	n/a	200	13.79	n/a	0.65	0.97	100
4358-0400-050	4	102.40	0.110	2.79	n/a	200	13.79	n/a	0.83	1.24	50
4358-0400-100	4	102.40	0.110	2.79	n/a	200	10.35	n/a	0.83	1.24	100
4358-0600-050	6	152.40	0.110	2.79	n/a	150	10.35	n/a	1.60	2.39	50
4358-0600-100	6	152.40	0.110	2.79	n/a	150	10.35	n/a	1.60	2.39	100
4358-0800-050	8	204.80	0.110	2.79	n/a	150	10.35	n/a	2.30	3.43	50
4358-0800-100	8	204.80	0.110	2.79	n/a	150	10.35	n/a	2.30	3.43	100
4358-1000-050	10	254.0	0.160	4.06	n/a	150	10.35	n/a	3.20	4.77	50
4358-1000-100	10	254.0	0.160	4.06	n/a	150	10.35	n/a	3.20	4.77	100
4358-1200-050	12	304.80	0.170	4.32	n/a	150	10.35	n/a	3.50	5.22	50
4358-1200-100	12	304.80	0.170	4.32	n/a	150	10.35	n/a	3.50	5.22	100


Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

4359

NITRILE/PVC OIL RESISTANT DISCHARGE HOSE - BLACK

CONSTRUCTION: Tube and cover are black NBR/PVC. **TEMPERATURE:** -20°F (-29°C) to +210°F (+99°C) **BRANDING:** None **APPLICATION:** For use in industrial washdown, irrigation,

general dewatering, pump discharge and drainage.

FEATURES:

- Up to 250 PSI (17.24 BAR) working pressure
- Oil resistant tube and cover
- Resists heat, cold, ozone and UV light
- Lightweight and flexible
- 660 ft. lengths available in 4", 6" and 8" IDs

Part	١.	.D.		Wall Thickness		Max W.P. @ 68°F		Vacuum @ 68°F (in	n		Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	of Hg)	lb./ft.	KG/m	(ft.)
4359-0075-050	3/4	19.05	0.110	2.79	n/a	250	17.25	n/a	0.10	0.15	50
4359-0075-100	3/4	19.05	0.110	2.79	n/a	250	17.25	n/a	0.10	0.15	100
4359-0100-050	1	25.40	0.110	2.79	n/a	250	17.25	n/a	0.14	0.21	50
4359-0100-100	1	25.40	0.110	2.79	n/a	250	17.25	n/a	0.14	0.21	100
4359-0150-050	1-1/2	38.10	0.110	2.79	n/a	250	17.25	n/a	0.26	0.39	50
4359-0150-100	1-1/2	38.10	0.110	2.79	n/a	250	17.25	n/a	0.26	0.39	100
4359-0200-050	2	50.80	0.110	2.79	n/a	250	17.25	n/a	0.34	0.51	50
4359-0200-100	2	50.80	0.110	2.79	n/a	250	17.25	n/a	0.34	0.51	100
4359-0250-050	2-1/2	63.50	0.110	2.79	n/a	250	17.25	n/a	0.47	0.70	50
4359-0250-100	2-1/2	63.50	0.110	2.79	n/a	250	17.25	n/a	0.47	0.70	100
4359-0300-050	3	76.20	0.110	2.79	n/a	250	17.25	n/a	0.65	0.97	50
4359-0300-100	3	76.20	0.110	2.79	n/a	200	13.79	n/a	0.65	0.97	100
4359-0400-050	4	102.40	0.110	2.79	n/a	200	13.79	n/a	0.83	1.24	50
4359-0400-100	4	102.40	0.110	2.79	n/a	200	13.79	n/a	0.83	1.24	100
4359-0400-660	4	102.40	0.110	2.79	n/a	200	13.79	n/a	0.83	1.24	660
4359-0600-050	6	152.40	0.110	2.79	n/a	150	10.35	n/a	1.60	2.39	50
4359-0600-100	6	152.40	0.110	2.79	n/a	150	10.35	n/a	1.60	2.39	100
4359-0600-660	6	152.40	0.110	2.79	n/a	150	10.35	n/a	1.60	2.39	660
4359-0800-050	8	204.80	0.110	2.79	n/a	150	10.35	n/a	2.30	3.43	50
4359-0800-100	8	204.80	0.110	2.79	n/a	150	10.35	n/a	2.30	3.43	100
4359-0800-660	8	204.80	0.110	2.79	n/a	150	10.35	n/a	2.30	3.43	660
4359-1000-050	10	254.0	0.160	4.06	n/a	150	10.35	n/a	3.20	4.77	50
4359-1000-100	10	254.0	0.160	4.06	n/a	150	10.35	n/a	3.20	4.77	100
4359-1200-050	12	304.80	0.170	4.32	n/a	150	10.35	n/a	3.50	5.22	50
4359-1200-100	12	304.80	0.170	4.32	n/a	150	10.35	n/a	3.50	5.22	100

DESIGN FACTOR: 3:1

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

🔪 WARNING: This product can expose you to chemicals including DINP, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

4380

THERMALLY NON-CONDUCTIVE FURNACE DOOR HOSE

CONSTRUCTION: Tube is EPDM, white, smooth and thermally non-conductive. Cover is a glass fiber ply impregnated with heat and flame-resistant synthetic rubber. Reinforcement is a two-ply synthetic fabric.

TEMPERATURE: -40°F (-40°C) to +266°F (+130°C) Cover to +575°F (+302°C) **APPLICATION:** Conveys cooling water to furnace doors in steel mills, glass plants and similar operations.

FEATURES:

- Superior heat resistant cover resists heat up to +575°F
- Resists heat, open flame and splashes of white hot metal to +575°F (+302°C)
- EPDM tube is thermally non-conductive

BRANDING: None

DESIGN FACTOR: 3:1

Part Number	I.D. O.D.		.D.	Reinf. Plies	Max W.P. @ 68°F		Vacuum @ 68°F (in	Weight		Minimum Bend Radius		Std. Length	
Number	inch	mm	inch	mm	Files	PSI	BAR	of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4380-0050-100	1/2	12.70	0.87	22.00	2	150	10.35	n/a	0.20	0.30	5.00	127.00	100
4380-0075-100	3/4	19.05	1.22	31.00	2	150	10.35	n/a	0.30	0.45	7.50	190.00	100
4380-0100-100	1	25.40	1.54	39.00	2	150	10.35	n/a	0.50	0.74	10.00	254.00	100
4380-0125-100	1-1/4	31.75	1.89	48.00	2	150	10.35	n/a	0.90	1.34	12.60	320.00	100
4380-0150-100	1-1/2	38.10	2.13	54.00	2	150	10.35	n/a	1.00	1.49	15.00	380.00	100
4380-0200-100	2	50.80	2.68	68.00	2	150	10.35	n/a	1.10	1.64	20.00	508.00	100

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed. MARNING: This product can expose you to chemicals including titanium dioxide, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

RUBBER WATER SUCTION HOSE

CONSTRUCTION: Tube is EPDM blend, smooth and black. Cover is also a EPDM blend with a fabric impression. Reinforcement is either a two-ply or four-ply synthetic fabric with a double wire helix.

TEMPERATURE: -25°F (-32°C) to +185°F (+85°C)

BRANDING: Jason logo 4450 WATER SUCTION

150 PSI 10.35 BAR Yellow mylar longitudinal stripe.

DESIGN FACTOR: 3:1

4450

APPLICATION: For suction, discharge or gravity flow of water in construction, mining, oil exploration, agriculture and equipment rental.

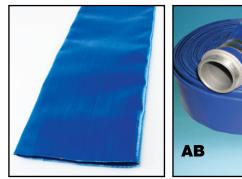
FEATURES:

- Resistant to water-based ag fertilizers
- Resistant to salt water
- Cover is abrasion and weather resistant
- Flexible and economical

Part	I	.D.	0.	.D.	Reinf. Plies	-	x W.P. 68°F	Vacuum @ 68°F (in	We	ight		imum Radius	Std. Length
Number	in.	mm	in.	mm	Plies	PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4450-0100-100	1	25.40	1.42	36.00	2	150	10.35	28.0	0.50	0.75	3.75	95.00	100
4450-0125-100	1-1/4	31.75	1.70	43.18	2	150	10.35	28.0	0.75	1.12	6.00	152.40	100
4450-0150-100	1-1/2	38.10	1.96	49.78	2	150	10.35	28.0	0.80	1.19	6.50	165.10	100
4450-0200-100	2	50.80	2.49	63.25	2	150	10.35	28.0	1.11	1.65	8.00	203.20	100
4450-0200-200	2	50.80	2.49	63.25	2	150	10.35	28.0	1.11	1.65	8.00	203.20	200
4450-0250-100	2-1/2	63.50	2.99	75.95	2	150	10.35	28.0	1.75	2.60	10.00	254.00	100
4450-0300-100	3	76.20	3.50	88.90	2	150	10.35	28.0	2.24	3.33	12.00	304.80	100
4450-0300-200	3	76.20	3.50	88.90	2	150	10.35	28.0	2.24	3.33	12.00	304.80	200
4450-0400-100	4	101.60	4.53	115.06	2	150	10.35	28.0	2.79	4.15	18.00	457.20	100
4450-0400-200	4	101.60	4.53	115.06	2	150	10.35	28.0	2.79	4.15	18.00	457.20	200
4450-0500-100	5	127.00	5.68	144.27	2	150	10.35	28.0	3.25	4.84	26.00	660.40	100
4450-0600-020	6	152.40	6.54	166.12	2	150	10.35	28.0	5.75	8.56	31.00	787.40	20
4450-0600-050	6	152.40	6.54	166.12	2	150	10.35	28.0	5.75	8.56	31.00	787.40	50
4450-0600-100	6	152.40	6.54	166.12	2	150	10.35	28.0	5.75	8.56	31.00	787.40	100
4450-0800-020	8	203.20	8.79	223.27	4	100	6.89	28.0	6.59	9.81	42.00	1066.80	20
4450-1000-020	10	254.00	10.91	277.11	4	75	5.17	28.0	10.25	15.25	50.00	1270.00	20
4450-1200-020	12	340.80	12.91	327.91	4	75	5.17	25.0	13.50	20.09	60.00	1524.00	20

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.


We disclaim any liability for use of our products in applications other than which they are designed.

🔨 WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

4502

2 BLUE PVC WATER DISCHARGE BULK HOSE & ASSEMBLIES

CONSTRUCTION: Tube and cover are blue PVC. Reinforcement is knitted polyester yarn.

TEMPERATURE: -14°F (-26°C) to +150°F (+66°C)

BRANDING: Jason logo WP XX (PSI) ID.

APPLICATION: For general purpose water discharge in construction, agriculture and drip irrigation.

FEATURES:

- Light and easy to handle
- Rolls flat for convenient storage
- Homogeneous construction eliminates tube & cover separation
- Maximum bonding as tube & cover are extruded simultaneously

DESIGN FACTOR: 3:1

BULK HOSE

Part Number	I.	.D.	Wall Thickness		Reinf.		3 W.P. 68°F	Vacuum @ 68°F (in	i i i i i i i i i i i i i i i i i i i		Std. Length		
Number	in.	mm	in.	mm		PSI	BAR	of Hg)	lb./ft.	KG/m	(ft.)		
4502-1000	1	25.40	0.056	1.42	Knitted	85	5.86	n/a	0.10	0.15	300		
4502-1500	1-1/2	38.10	0.056	1.42	Knitted	85	5.86	n/a	0.21	0.31	300		
4502-1500-050	1-1/2	38.10	0.056	1.42	Knitted	85	5.86	n/a	0.21	0.31	50		
4502-2000	2	50.80	0.056	1.42	Knitted	85	5.86	n/a	0.25	0.37	300		
4502-2000-050	2	50.80	0.056	1.42	Knitted	85	5.86	n/a	0.25	0.37	50		
4502-2500	2-1/2	63.50	0.060	1.52	Knitted	75	5.17	n/a	0.29	0.43	300		
4502-3000	3	76.20	0.062	1.57	Knitted	70	4.83	n/a	0.39	0.58	300		
4502-3000-050	3	76.20	0.062	1.57	Knitted	70	4.83	n/a	0.39	0.58	50		
4502-4000	4	101.60	0.062	1.57	Knitted	70	4.83	n/a	0.60	0.89	300		
4502-6000	6	152.40	0.077	1.96	Knitted	50	3.45	n/a	1.15	1.71	300		
4502-8000	8	203.20	0.089	2.26	Knitted	45	3.10	n/a	1.20	1.79	300		

HOSE ASSEMBLIES - CUT • COUPLED • COILED • TIED

Part Number	I.D. Length (ft.)			Coupling	Reinf.			Weight	
Number	in.	mm	(11.)			PSI	BAR	lb.	KG
4502-1500-050AB	1-1/2	38.10	50	1-1/2" I.D. AB Pin Lug (M x F)	Knitted	85	5.86	9.00	4.08
4502-2000-050AB	2	50.80	50	2" I.D. AB Pin Lug (M x F)	Knitted	85	5.86	12.00	5.44
4502-3000-050AB	3	76.20	50	3" I.D. AB Pin Lug (M x F)	Knitted	70	4.83	22.00	9.98
4502-1500-050CE	1-1/2	38.10	50	1-1/2" I.D. Aluminum Cam Lock (C x E)	Knitted	85	5.86	9.00	4.08
4502-2000-050CE	2	50.80	50	2" I.D. Aluminum Cam Lock (C x E)	Knitted	85	5.86	12.00	5.44
4502-3000-050CE	3	76.20	50	3" I.D. Aluminum Cam Lock (C x E)	Knitted	70	4.83	22.00	9.98
4502-4000-050CE	4	101.60	50	4" I.D. Aluminum Cam Lock (C x E)	Knitted	70	4.83	32.00	14.52
4502-6000-050 CE	6	152.40	50	6" I.D. Aluminum Cam Lock (C x E)	Knitted	50	3.45	52.00	23.59

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

4504

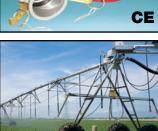
WINE RED PVC WATER DISCHARGE HOSE & ASSEMBLIES

MEDIUM DUTY

CONSTRUCTION: Tube and cover are wine red PVC. Reinforcement is knitted polyester yarn.

TEMPERATURE: -14°F (-26°C) to +150°F (+66°C)

BRANDING: Jason logo WP XX (PSI) ID.


APPLICATION: For general purpose water discharge in construction, agriculture and drip irrigation.

FEATURES:

- Medium duty hose
- Rolls flat for convenient storage
- Homogeneous construction eliminates tube and cover separation
- Maximum bonding as tube and cover is extruded simultaneously

DESIGN FACTOR: 3:1

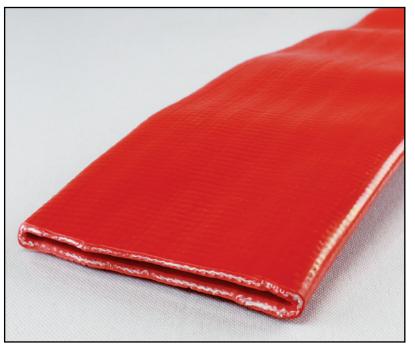
BULK HOSE

Part Number	I.	.D.	Wall Thickness		Reinf.	-	: W.P. 68°F	Vacuum @ 68°F	Weight		Std. Length
Number	inch	mm	inch	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	(ft.)
4504-1500	1-1/2	38.10	0.076	1.93	Knitted	115	7.93	n/a	0.21	0.31	300
4504-2000	2	50.80	0.076	1.93	Knitted	115	7.93	n/a	0.25	0.37	300
4504-2500	2-1/2	63.50	0.079	2.01	Knitted	115	7.93	n/a	0.29	0.43	300
4504-3000	3	76.20	0.079	2.01	Knitted	100	6.89	n/a	0.39	0.58	300
4504-4000	4	101.60	0.081	2.06	Knitted	100	6.89	n/a	0.60	0.89	300
4504-6000	6	152.40	0.112	2.84	Knitted	75	5.17	n/a	1.15	1.71	300
4504-8000	8	203.20	0.124	3.15	Knitted	60	4.14	n/a	1.20	1.79	300

HOSE ASSEMBLIES **CUT • COUPLED • COILED • TIED**

Part	Ι.	D.	Length	Coupling		Coupling		Coupling				Max @ 68		Weight		
Number	in.	mm	(ft.)			PSI	BAR	lb.	KG							
4504-2000-050AB	2	50.80	50	2" I.D. AB Pin Lug (M x F)	Knitted	115	7.93	12.00	5.44							
4504-3000-050AB	3	76.20	50	3" I.D. AB Pin Lug (M x F)	Knitted	100	6.89	22.00	9.98							
4504-2000-050CE	2	50.80	50	2" I.D. Aluminum Cam Lock (C x E)	Knitted	115	7.93	12.00	5.44							
4504-3000-050CE	3	76.20	50	3" I.D. Aluminum Cam Lock (C x E)	Knitted	100	6.89	22.00	9.98							

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure **Re-Rating for increased Temperatures (Page 12) for more information.**


All sizes may not be stocked in all locations. Check with customer service for availability.

RED PVC WATER DISCHARGE HOSE

4515

HEAVY DUTY

CONSTRUCTION: Tube and cover are bright red PVC. Reinforcement is knitted polyester yarn.

TEMPERATURE: -14°F (-26°C) to +150°F (+66°C)

BRANDING: None

APPLICATION: For water discharge in construction, agriculture and heavy duty equipment rental.

FEATURES:

- High WP for heavy duty applications
- Rolls flat for convenient storage
- Homogeneous construction eliminates tube and cover separation
- Maximum bonding as tube and cover extruded simultaneously

DESIGN	FACTOR:	3:1

Part	I.D.		Wall Thickness		Reinf.		W.P. 68°F	Vacuum @ 68°F	We	ight	Std. Length
Number	in.	mm	in.	mm		PSI	BAR	(in of Hg)	lb./ft.	KG/m	(ft.)
4515-1500	1-1/2	38.10	0.090	2.29	Knitted	140	9.65	n/a	0.22	0.32	300
4515-2000	2	50.80	0.090	2.29	Knitted	130	8.96	n/a	0.26	0.38	300
4515-2500	2-1/2	63.50	0.098	2.49	Knitted	125	8.61	n/a	0.30	0.44	300
4515-3000	3	76.20	0.098	2.49	Knitted	125	8.61	n/a	0.40	0.59	300
4515-4000	4	101.60	0.110	2.79	Knitted	125	8.61	n/a	0.62	0.91	300
4515-6000	6	152.40	0.111	2.82	Knitted	115	7.92	n/a	1.18	1.75	300
4515-8000	8	203.20	0.111	2.82	Knitted	70	4.82	n/a	1.23	1.83	300

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including DINP, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

GREEN PVC WATER SUCTION HOSE

CONSTRUCTION: Tube is PVC, smooth, green. Cover is also PVC, smooth to lightly corrugated. Reinforcement is a PVC helix.

TEMPERATURE: -5°F (-21°C) to +140°F (+60°C)

BRANDING: None.

DESIGN FACTOR: 3:1

APPLICATION: Suction, discharge or gravity flow of water, salt water and oily water in construction, agriculture, mining or equipment rental.

FEATURES:

- Cover is weather, ozone and UV resistant
- Lightweight and flexible

Part	I	I.D.		O.D.		Max W.P. @ 68°F		Vacuum @ 68°F (in	Weight		Minimum Bend Radius		Std. Length
Number	in.	mm	in.	mm		PSI	BAR	of Hg)	lb./ft.	KG/m	in.	mm	(ft.)
4601-0750	3/4	19.05	0.95	24.13	PVC Helix	100	6.89	28.0	0.16	0.24	2.00	50.8	100
4601-1000	1	25.40	1.22	30.99	PVC Helix	100	6.89	28.0	0.20	0.30	3.00	76.2	100
4601-1250	1-1/4	31.75	1.41	35.81	PVC Helix	100	6.89	28.0	0.26	0.39	4.00	101.6	100
4601-1500	1-1/2	38.10	1.77	44.96	PVC Helix	100	6.89	28.0	0.35	0.52	5.00	127.0	100
4601-2000	2	50.80	2.32	58.93	PVC Helix	100	6.89	28.0	0.54	0.80	8.00	203.2	100
4601-2500	2-1/2	63.50	2.87	72.90	PVC Helix	80	5.52	26.0	0.70	1.04	10.00	254.0	100
4601-3000	3	76.20	3.35	85.09	PVC Helix	75	5.17	26.0	0.93	1.38	12.00	304.8	100
4601-4000	4	101.60	4.49	114.05	PVC Helix	60	4.14	26.0	1.48	2.20	14.00	355.6	100
4601-6050	6	152.40	6.46	164.08	PVC Helix	50	3.45	26.0	2.89	4.30	31.00	787.4	50

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

Ne disclaim any liability for use of our products in applications other than which they are designed.

WATER HOSE

4615

CLEAR/WHITE HELIX PVC WATER SUCTION HOSE

CONSTRUCTION: Tube is PVC, smooth, clear. Cover is also PVC, smooth to lightly corrugated. Reinforcement is a PVC helix.

TEMPERATURE: -5°F (-21°C) to +140°F (+60°C)

BRANDING: None.

DESIGN FACTOR: 3:1

APPLICATION: Suction, discharge or gravity flow of water, salt water and oily water in construction, agriculture, mining or equipment rental.

FEATURES:

- Cover is weather, ozone and UV resistant
- Lightweight and flexible
- Allows for visual flow inspection

Part Number	I.D.		O.D.		Reinf.	Max W.P. @ 68°F		Vacuum @ 68°F (in	Weight		Minimum Bend Radius		Std. Length
Number	inch	mm	inch	mm		PSI	BAR	of Hg)	lb./ft.	KG/m	inch	mm	(ft.)
4615-0750	3/4	19.1	0.95	24.1	PVC Helix	100	6.89	28.0	0.16	0.24	2.00	50.8	100
4615-1000	1	25.4	1.22	31.0	PVC Helix	100	6.89	28.0	0.18	0.27	3.00	76.2	100
4615-1250	1-1/4	31.8	1.41	35.8	PVC Helix	100	6.89	28.0	0.24	0.36	4.00	101.6	100
4615-1500	1-1/2	38.1	1.77	45.0	PVC Helix	100	6.89	28.0	0.35	0.52	5.00	127.0	100
4615-2000	2	50.8	2.32	58.9	PVC Helix	100	6.89	28.0	0.55	0.82	8.00	203.2	100
4615-2500	2-1/2	63.5	2.87	72.9	PVC Helix	65	4.48	26.0	0.79	1.18	10.00	254.0	100
4615-3000	3	76.2	3.35	85.1	PVC Helix	55	3.79	26.0	0.97	1.44	12.00	304.8	100
4615-4000	4	101.6	4.49	114.1	PVC Helix	50	3.45	26.0	1.77	2.63	14.00	355.6	100
4615-6050	6	152.5	6.46	164.1	PVC Helix	50	3.45	26.0	2.89	4.30	31.00	787.4	50

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

4703

HEAVY DUTY DJ MILL DISCHARGE HOSE & ASSEMBLIES

CONSTRUCTION: Tube is SBR, smooth and black. The cover is a double jacket made with 100% polyester.

TEMPERATURE: -25°F (-32°C) to +185°F (+85°C)

BRANDING: Service Pressure 300 PSI.

APPLICATION: Municipal washdown or hydrant-to-truck water supply line. Heavy duty equipment/ pump rental, ship/deck washdown.

FEATURES:

- Double cover gives heavy duty abrasion resistance
- Rolls flat for easy storage
- Economical, lightweight and flexible
- Double cover increases service pressure rating

BULK HOSE

Part Number -	I.D.		Coupling Bowl		Reinf.	Service Pressure		Test Pressure		Vuoduini		Weight	
Number	in.	mm	in.	mm	Plies	PSI	BAR	PSI	BAR	(in of Hg)	lb./ft.	KG/m	(ft.)
4703-1500	1-1/2	38.10	1.94	46.04	n/a	300	20.68	600	41.36	600	0.26	0.39	50
4703-2000	2	50.80	2.50	58.74	n/a	300	20.68	600	41.36	600	0.33	0.49	50
4703-2500	2-1/2	63.50	2.81	71.44	n/a	300	20.68	600	41.36	600	0.45	0.67	50
4703-1501	1-1/2	38.10	1.94	46.04	n/a	300	20.68	600	41.36	600	0.26	0.39	100
4703-2001	2	50.80	2.50	58.74	n/a	300	20.68	600	41.36	600	0.33	0.49	100
4703-2501	2-1/2	63.50	2.81	71.44	n/a	300	20.68	600	41.36	600	0.45	0.67	100

HOSE ASSEMBLIES

CUT • COUPLED • COILED • TIED

Part	I.I	D.	Reinf.	Thread	We	ight	Std.
Number	in.	mm	Plies	Туре	lb.	KG	Length (ft.)
4703-1500-050ERNPS	1-1/2	38.10	n/a	NPS	15.00	6.80	50
4703-1500-050ERNST	1-1/2	38.10	n/a	NST	15.00	6.80	50
4703-2000-050ERNPS	2	50.80	n/a	NPS	20.00	9.07	50
4703-2500-050ERNPS	2-1/2	63.50	n/a	NPS	25.00	11.34	50
4703-2500-050ERNST	2-1/2	63.50	n/a	NST	25.00	11.34	50

Couplings are internally expanded, aluminum, hardcoated NPS or NST Male x Female rocker lug

Note: Assembly is rated at 150 PSI. Service pressure is temperature dependent. See the General Information section Table II - Pressure Re-Rating for Increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability.

4705

MUNICIPAL GRADE SJ MILL DISCHARGE HOSE & ASSEMBLIES

CONSTRUCTION: Tube is SBR, smooth and black. Cover is a single jacket made with 100% polyester.

TEMPERATURE: -25°F (-32°C) to +185°F (+85°C) **BRANDING:** ID SJ MILL WP (PSI) (BAR)

APPLICATION: For water discharge service in rental yards, fleet service, municipal

wash-down and utility dewatering.

FEATURES:

- HD synthetic cover gives better abrasion resistance
- Rolls flat for convenient storage
- Economical, lightweight and flexible
- Hose is designed for higher working pressures

BULK HOSE

Part Number	I.D.		Coupling Bowl		Reinf. Plies	Working Pressure		Service Pressure		Vacuum @ 68°F	Weight		Std. Length
Number	inch	mm	inch	mm	Files	PSI	BAR	PSI	BAR	(in of Hg)	lb./ft.	KG/m	(feet)
4705-0150-050	1-1/2	38.10	1.81	46.04	n/a	150	10.34	300	20.68	n/a	0.23	0.34	50
4705-0150-100	1-1/2	38.10	1.81	46.04	n/a	150	10.34	300	20.68	n/a	0.23	0.34	100
4705-0200-050	2	50.80	2.31	58.74	n/a	150	10.34	300	20.68	n/a	0.28	0.42	50
4705-0200-100	2	50.80	2.31	58.74	n/a	150	10.34	300	20.68	n/a	0.28	0.42	100
4705-0250-050	2-1/2	63.50	2.81	71.44	n/a	150	10.34	300	20.68	n/a	0.39	0.58	50
4705-0250-100	2-1/2	63.50	2.81	71.44	n/a	150	10.34	300	20.68	n/a	0.39	0.58	100
4705-0300-050	3	76.20	3.38	85.73	n/a	150	10.34	300	20.68	n/a	0.50	0.74	50
4705-0300-100	3	76.20	3.38	85.73	n/a	150	10.34	300	20.68	n/a	0.50	0.74	100
4705-0400-050	4	101.60	4.38	111.13	n/a	150	10.34	300	20.68	n/a	0.66	0.98	50
4705-0400-100	4	101.60	4.38	111.13	n/a	150	10.34	300	20.68	n/a	0.66	0.98	100
4705-0600-050	6	152.40	6.38	161.93	n/a	150	10.34	300	20.68	n/a	1.00	1.49	50

HOSE ASSEMBLIES - CUT • COUPLED • COILED • TIED

Part	I.D.		Std. Length	Description		king sure	Wei	ght	Assembly Pressure Rating	
Number	in.	mm	(ft.)	Beschption	PSI	BAR	lb.	KG	(PSI)	
4705-0150-050AB	1-1/2	38.10	50	CPLD M x F AB Pin Lug w/5/8" Bands	150	10.34	8.00	3.63	150	
4705-0200-050AB	2	50.80	50	CPLD M x F AB Pin Lug w/5/8" Bands	150	10.34	12.00	5.44	150	
4705-0300-050AB	3	76.20	50	CPLD M x F AB Pin Lug w/5/8" Bands	150	10.34	22.00	9.98	150	
4705-0150-050CE	1-1/2	38.10	50	CPLD M x F 1-1/2" AL Cam Lock (C x E)	150	10.34	8.00	3.63	150	
4705-0200-050CE	2	50.80	50	CPLD M x F 2" AL Cam Lock (C x E)	150	10.34	12.00	5.44	150	
4705-0300-050CE	3	76.20	50	CPLD M x F 3" AL Cam Lock (C x E)	150	10.34	22.00	9.98	150	

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

WARNING: This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

MSHA FIRE HOSE ASSEMBLIES

CONSTRUCTION: Chloroprene (CR) tube with a cover that is polyester.

TEMPERATURE: -25°F (-32°C) to +185°F (+85°C)

BRANDING: Jason logo 300 PSI Test, MSHA #18-FHA08001.

4735

APPLICATION: Underground mining fire hose.

FEATURES:

- Meets MSHA rating 18-FHA08001, therefore resistant to fire
- Rolls flat for easy storage

• Couplings are anodized aluminum M x F expansion ring with rocker lugs

• 100% polyester jacket, free from defects, twists, knots and irregularities

Part	I.D.		Coupling	Reinf.	Service Pressure		Test Pressure		vacuum		ight	Standard Lengths
Number	in.	mm	Description	Plies	PSI	BAR	PSI	BAR	(in of Hg)	lb./ft.	KG/m	(ft.)
4735-0150-050ERNPS	1-1/2	38.10	NPS EXP Ring	n/a	300	20.68	900	62.04	n/a	0.23	0.34	50
4735-0150-050ERNST	1-1/2	38.10	NST EXP Ring	n/a	300	20.68	900	62.04	n/a	0.23	0.34	50
4735-0150-100ERNPS	1-1/2	38.10	NPS EXP Ring	n/a	300	20.68	900	62.04	n/a	0.23	0.34	100
4735-0150-100ERNST	1-1/2	38.10	NST EXP Ring	n/a	300	20.68	900	62.04	n/a	0.23	0.34	100

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

WATER HOSE

5823

PRESSURE WASHER ASSEMBLIES

CONSTRUCTION: Tube and cover are made of special synthetic rubber. Reinforcement is a one wire braid.

TEMPERATURE: -40°F (-40°C) to +212°F (+100°C)

BRANDING: Jason logo 3/8 MAINSTREAM™ Pressure Washer - 3000 PSI MAX WP.

NOT FOR STEAM SERVICE

APPLICATION: Used in clean-up applications for poultry plants, dairies, off road equipment, paper mills, construction, homes and patios to name a few.

DESIGN FACTOR: 3:1

FEATURES:

- Cover is oil, weather and abrasion resistant
- Handles working pressures up to 3000 lbs
- Can be used with hot or cold water and mild detergents
- Ergonomic bend restrictors are included in each assembly
- Available in the popular 50' and 75' lengths

Part Number	I.D. x Length	Coupling	Reinf. Braids		W.P. 8°F	Weight per Length		
Number			Braius	PSI	BAR	lbs.	KG	
5823-06-050	3/8" x 50' 9.5 mm x 15.2 m	3/8" MNPT x 3/8" MSPT w/Ergonomic Bend Restrictor Each End	1	3000	206.70	10.02	4.54	
5823-06-075	3/8" x 75' 9.5 mm x 22.9 m	3/8" MNPT x 3/8" MSPT w/Ergonomic Bend Restrictor Each End	1	3000	206.70	15.48	7.02	
5823-06-100	3/8" x 100' 9.5 mm x 30.48 m	3/8" MNPT x 3/8" MSPT w/Ergonomic Bend Restrictor Each End	1	3000	206.70	20.04	9.08	

Note: DO NOT USE FOR ANY STEAM APPLICATIONS

Working pressure (W.P.) is temperature dependent. See the General Information section Table II - Pressure Re-Rating for increased Temperatures (Page 12) for more information.

le disclaim any liability for use of our products in applications other than which they are designed.

All sizes may not be stocked in all locations. Check with customer service for availability.

COUPLINGS & ACCESSORIES

The value of a hose is enhanced by the proper selection of couplings.

Couplings attach to the end of the hose to facilitate connection to a pressure source. In order to make the transition successful, the coupling termination must provide a leak-proof seal and the hose/coupling interface must be properly matched.

SAFETY WARNING - Because the hose/coupling interface is critical to the hose assembly performance, always follow the specific instructions of the hose and coupling manufacturers regarding the match of hose/fittings and assembly procedures. Trained personnel using proper tools and procedures should make the hose assemblies. Failure to follow the manufacturers' instructions or failure to use trained personnel might be dangerous and could result in damage to property and serious bodily injury.

Jason offers a wide range of couplings & accessories that complement the hose line and the markets they serve.

COUPLINGS INCLUDE:

- Crimp Combination Nipples
 - Sleeves
 - Ferrules
- Standard Cam and Groove Couplings
 - Anti-Leak C & G Couplings
 - Reducing C & G Couplings
 - Tank Truck API Adapters, Caps & Couplers
- Universal Couplings
- Ground Joint Couplings
- Sandblast Hose Couplings
- Locking Lever Pump Couplings
- Combination Hose Nipples

ACCESSORIES INCLUDE:

- Clamps Interlocking & Double Bolt
- Brass Ball Valves, Mini Ball Valves
- Foot Valves
- Nozzles
- Wrenches
- Strainers for Water Suction Hose
- Strainers for Oil & Gas Drilling
- Sight Glasses
- Pump Plate Strainers
- Quick Connect Air Couplers

COUPLINGS & ACCESSORIES

JASON CRIMP METHODOLOGY

This brochure will introduce you to the "Jason Crimp Methodology" for industrial hose and couplings. We believe that crimping offers a far superior assembly method for the following reasons:

- There is more retention along the shank or barb. More retention means a significant decrease in possible leaks.
- Provides a much higher safety factor than what bands can provide.
- No sharp edges. Banded assemblies can have four or more sharp edges that create the possibility that the assembler could be hurt.
- A crimped ferrule or sleeve has smooth edges which make it safe to handle and a better look to the overall assembly.
- The shank lengths of our cam and groove fittings are a match with the sleeves and ferrules. This creates better retention than banded or swaged assemblies and helps to avoid damage to the tube and/or cover.

Please do not mix Jason Industrial couplings with other products. We cannot recommend working pressures or crimp specifications for non-Jason parts. Please follow the safety recommendations as published in the NAHAD Industrial Hose Assembly Specification Guidelines.

We recommend that you refer to the NAHAD Industrial Hose Assembly Specification Guidelines for industry-accepted practices for assembling hoses and couplings, which include hydrostatic testing. Please note that Jason couplings, ferrules and sleeves are designed to work together.

Please do not mix and match with other products.

RECOMMENDED WORKING PRESSURES									
Size	Combina	tion Nipples	& Groove						
(inch)	Sleeve	Ferrule	Sleeve	Ferrule					
1-1/2	300	350	250	250					
2	250	300	250	250					
3	200	300	125	150					
4	175	300	110	150					

Working pressures are given in pounds per square inch (PSI) at 70°F ambient temperature.

PLEASE NOTE: The working pressure of an assembly is equal to the component with the least working pressure.

CAM & GROOVE CRIMP COUPLINGS

All Cam & Groove Fittings are Aluminum

WARNING! Not for use in steam applications!

FEMALE COUPLER x HOSE SHANK

Female end fits male adapter or Dust Plug. Shank fits into hose ID. Bowl has recess for washer replacement.

Part	Size	Shank	0.D.	Corretions	Stem	0.D.	
Number	(inch)	inch	mm	Serrations	inch	mm	
C150AC	1-1/2	1.535	39.0	10	1.54	39.0	
C200AC	2	2.027	51.5	12	2.03	51.5	
C250AC	2-1/2	2.527	64.2	15	2.53	64.2	
C300AC	3	3.031	77.0	14	3.03	77.0	
C400AC	4	4.035	102.5	15	4.04	102.5	
C600AC	6	6.047	153.6	22	6.05	153.6	

WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

PART E

MALE ADAPTER x HOSE SHANK

Male end fits female coupler or Dust Cap. Shank fits into hose ID.

Part	Size	Shank	O.D.		Stem	0.D.
Number	(inch)	inch	mm	Serrations	inch	mm
E150AC	1-1/2	1.535	39.0	10	1.54	39.0
E200AC	2	2.027	51.5	12	2.03	51.5
E250AC	2-1/2	2.527	64.2	15	2.53	64.2
E300AC	3	3.031	77.0	14	3.03	77.0
E400AC	4	4.035	102.5	15	4.04	102.5
E600AC	6	6.047	153.6	22	6.05	153.6

MARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

COMBINATION HOSE NIPPLES MALE x HOSE SHANK-PLATED STEEL

Combination Nipples are used in a variety of fluid applications. End (male) threads are NPT Will mate with Foot Valves, Strainers, Cam & Groove Part A & D, etc. and are the same size as the shank. These are made with grooves for accepting crimp ferrules.

Part	Size	Stem O	.D.
Number	(inch)	inch	mm
CN150PC	1-1/2	1.54	39.0
CN200PC	2	2.03	51.5
CN250PC	2-1/2	2.53	64.2
CN300PC	3	3.03	77.0
CN400PC	4	4.04	102.5
CN600PC	6	6.05	153.6

Jason Ferrules and Sleeves are designed to be used with Jason Combination Hose Nipples and the Part "C" and "E" Cam & Groove fittings (crimp style only). For crimp O.D.'s, please refer to pages 115 to 121.

Working pressures are determined by the type of hose and coupling used in the application.

DO NOT mix with other products.

Please Note - for any hose with a natural rubber tube, we recommend using a ferrule only (instead of a crimp sleeve). During the crimping process, couplings have a tendency to be squeezed out of proper crimp position if a crimp sleeve is being used.

CRIMP FERRULES (Plated Steel)

WARNING! Not for use in steam applications!

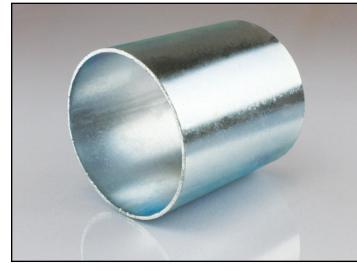
NOMENCLATURE

Ferrule Part Number 212F20P

212 = 2-12/16" Ferrule I.D. F = Ferrule 20 = 2" Hose I.D. P = Plated Steel

Nominal Crimp Ferrule Length

2.5	6 in (65 mm)	2.80 in (71	mm)	3.94 in	(100 mm)		4.1	7 in (106 m	m)	5.57 in (14	1 mm)
Hose Size (inch)	Part Number	Ferrule I.D. (inch)	Ferrule wall (inch)	Hose Size (inch)	Part Number	Ferrule I.D. (inch)	Ferrul wall (inch		Hose Size (inch)	Part Number	Ferrule I.D. (inch)	Ferrule wall (inch)
1-1/2	115F15P	1-15/16	0.06	2	214F20P	2-14/16	0.06	,	3	315F30P	3-15/16	0.09
1-1/2	200F15P	2	0.06	2	215F20P	2-15/16	0.06		4	409F40P	4-9/16	0.09
1-1/2	201F15P	2-1/16	0.06	2-1/2	302F25P	3-2/16	0.06		4	410F40P	4-10/16	0.09
1-1/2	202F15P	2-2/16	0.06	2-1/2	303F25P	3-3/16	0.06		4	411F40P	4-11/16	0.09
1-1/2	203F15P	2-3/16	0.06	2-1/2	304F25P	3-4/16	0.06		4	412F40P	4-12/16	0.09
1-1/2	204F15P	2-4/16	0.06	2-1/2	305F25P	3-5/16	0.06		4	413F40P	4-13/16	0.09
1-1/2	205F15P	2-5/16	0.06	2-1/2	307F25P	3-7/16	0.06		4	414F40P	4-14/16	0.09
1-1/2	206F15P	2-6/16	0.06	3	308F30P	3-8/16	0.09		4	415F40P	4-15/16	0.09
2	208F15P	2-8/16	0.06	3	309F30P	3-9/16	0.09		4	500F40P	5	0.09
2	209F20P	2-9/16	0.06	3	310F30P	3-10/16	0.09		4	501F40P	5-1/16	0.09
2	210F20P	2-10/16	0.06	3	311F30P	3-11/16	0.09		6	610F60P	6-10/16	0.12
2	211F20P	2-11/16	0.06	3	312F30P	3-12/16	0.09		6	614F60P	6-14/16	0.12
2	212F20P	2-12/16	0.06	3	313F30P	3-13/16	0.09		6	702F60P	7-2/16	0.12
2	213F20P	2-13/16	0.06	3	314F30P	3-14/16	0.09		6	706F60P	7-6/16	0.12

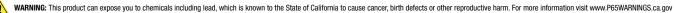

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

K WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

NWW.JASONINDUSTRIAL.COM

COUPLINGS & ACCESSORIES UNDUSTRIAL CRIMP COUPLINGS, FERRULES & SLEEVES CRIMP SLEEVES (Plated Steel)

WARNING! Not for use in steam applications!


NOMENCLATURE

Sleeve Part Number 305525P 305 = 3-5/16" Sleeve I.D.

S = Sleeve 25 = 2-1/2" Hose I.D. P = Plated Steel

Nominal Crimp Sleeve Length

2.56 ii	n (65 mm)	2.80	in (71 mm)	3.94	in (100 mm)	4.17 i	n (106 mm)	5.57 i	n (141 mm)	6.50 in	(165 mm)
Hose Size (inch)	Part Number	Sleeve I.D. (inch)	Sleeve wall (inch)	Hose Size (inch)	Part Number	Sleeve I.D. (inch)	Sleeve wall (inch)	Hose Size (inch)	Part Number	Sleeve I.D. (inch)	Sleeve wall (inch)
1-1/2	115S15P	1-15/16	0.06	2	215S20P	2-15/16	0.06	3	400S30P	4	0.09
1-1/2	200S15P	2	0.06	2-1/2	300S25P	3	0.06	4	409S40P	4-9/16	0.09
1-1/2	201S15P	2-1/16	0.06	2-1/2	302S25P	3-2/16	0.06	4	410S40P	4-10/16	0.09
1-1/2	202S15P	2-2/16	0.06	2-1/2	303S25P	3-3/16	0.06	4	411S40P	4-11/16	0.09
1-1/2	203S15P	2-3/16	0.06	2-1/2	304S25P	3-4/16	0.06	4	412S40P	4-12/16	0.09
1-1/2	204S15P	2-4/16	0.06	2-1/2	305S25P	3-5/16	0.06	4	413S40P	4-13/16	0.09
1-1/2	205S15P	2-5/16	0.06	2-1/2	307S25P	3-7/16	0.06	4	414S40P	4-14/16	0.09
1-1/2	206S15P	2-6/16	0.06	2-1/2	308S25P	3-8/16	0.06	4	415S40P	4-15/16	0.09
2	206S20P	2-6/16	0.06	3	308S30P	3-8/16	0.09	4	500S40P	5	0.09
2	208S20P	2-8/16	0.06	3	309S30P	3-9/16	0.09	4	610S40P	6-10/16	0.09
2	209S209	2-9/16	0.06	3	310S30P	3-10/16	0.09	6	610S60P	6-10/16	0.12
2	210S20P	2-10/16	0.06	3	311S30P	3-11/16	0.09	6	614S60P	6-14/16	0.12
2	211S20P	2-11/16	0.06	3	312S30P	3-12/16	0.09	6	702S60P	7-2/16	0.12
2	212S20P	2-12/16	0.06	3	313S30P	3-13/16	0.09	6	706S60P	7-6/16	0.12
2	213S20P	2-13/16	0.06	3	314S30P	3-14/16	0.09	8	807S80P	8-7/16	0.12
2	214S20P	2-14/16	0.06	3	315S30P	3-15/16	0.09	8	808S80P	8-8/16	0.12

CRIMPING SPECIFICATIONS

ASSEMBLY PROCEDURE RECOMMENDATIONS

The following six pages will list the crimp OD's for 1-1/2" to 6" ID hoses. These crimp OD's are guides only. We recommend that you accurately measure the dimensions of each hose, test each assembly and document everything.

It is difficult to establish ironclad standards because of the many variables in hose construction. Hardwall versus softwall construction, corrugated versus smooth cover and differing compounds all play a part in the difficulty of establishing crimp-specific OD's.

Once again, do not mix other manufacturer's products (hose, ferrule, sleeve or coupling) with Jason Industrial products.

Before doing any assembly work, please do the following steps:

- 1. Make sure each hose end is cut square. Clean any debris from the tube interior.
- 2. Before the coupling is installed, check for any burrs or sharp edges. This will make the coupling insertion easier and prevent inner tube damage.
- 3. **This next step is vital!** Measure the Hose O.D. in at least three different locations on each end. This will ensure that the proper sized ferrule/sleeve is used.
 - a. Never try to enlarge the tube to make it easier to insert the coupling this could result in tearing the tube. Lubrication should only be used if necessary.
 - b. There is no need to buff the cover of the hose.
- 4. The fitting shank should be inserted into the hose to where the last serration is covered. Inserting past this point does not help hose/coupling retention. Do not insert hose against the stop on cam & groove parts C & E. The hose will extrude during the crimping process and will fill in that space.
- 5. Check the charts on the next two pages for the hose ID and find the correct crimp OD.
- 6. If a static charge needs to be maintained, then bend the helical wires inside the hose tube. Slide the sleeve or ferrule onto the hose. Insert the shank and complete the assembly.
- 7. In petroleum tank truck applications, it is recommended that the ends be sealed. After crimping, the ends will be exposed and will require a chloroprene cement to accomplish the seal.
- 8. Jason Industrial recommends that ferrules **ONLY** be used when crimping a hose with a natural rubber tube. These hoses have a tendency to squeeze out of the fitting during the crimping process.
- 9. Each assembly should be hydrostatically tested to two times the working pressure, unless otherwise specified by the customer. Otherwise, please refer to the NAHAD Assembly Guidelines industry-accepted guidelines for hose assembly practices.
- 10. Non-sparking materials like brass or aluminum should be used if the assembly is conveying flammable liquids.

Please do not mix Jason Industrial couplings with other products. We cannot recommend working pressures or crimp specifications for non-Jason parts. Please follow the safety recommendations as published in the NAHAD Industrial Hose Assembly Specification Guidelines.

CRIMPING SPECIFICATIONS - 1-1/2"

± Recommended crimp % reduction is 20% for all sizes. This is a guide only. Crimp reductions can range from 18-25% and will vary from crimper to crimper. Please consult the NAHAD Industrial Hose Assembly Guidelines. The information that is provided here is based on a 72° F (+22° C) environment.

Hose	I.D.	Ferrule/Sleeve	Hose	e O.D.	Hose Wall	Thickness	Crim	p O.D.
(in.)	(mm)	Part No.	(in.)	(mm)	(in.)	(mm)	(in.)	(mm)
1-1/2	38.10	115F15P	1.796	45.62	0.148	3.75	1.86	47.23
		115S15P	1.812	46.02	0.156	3.96	1.87	47.52
			1.828	46.43	0.164	4.17	1.88	47.83
			1.844	46.84	0.172	4.37	1.90	48.16
			1.860	47.24	0.180	4.57	1.91	48.41
			1.876	47.65	0.188	4.78	1.92	48.77
			1.890	48.01	0.195	4.95	1.93	49.02
			1.906	48.41	0.203	5.16	1.94	49.23
1-1/2	38.10	200F15P	1.922	48.82	0.211	5.36	1.96	49.78
		200S15P	1.938	49.23	0.219	5.56	1.97	50.01
			1.954	49.63	0.227	5.77	1.98	50.39
			1.968	49.99	0.234	5.94	2.00	50.80
1-1/2	38.10	201F15P	1.984	50.39	0.242	6.15	2.01	51.05
		201S15P	2.000	50.80	0.250	6.35	2.02	51.28
			2.016	51.21	0.258	6.55	2.03	51.59
			2.032	51.61	0.266	6.76	2.05	52.07
1-1/2	38.10	202F15P	2.046	51.97	0.273	6.93	2.06	52.22
		202S15P	2.062	52.37	0.281	7.14	2.07	52.53
			2.078	52.78	0.289	7.34	2.08	52.86
			2.094	53.19	0.297	7.54	2.09	53.16
1-1/2	38.10	203F15P	2.110	53.59	0.305	7.75	2.11	53.47
		203S15P	2.126	54.00	0.313	7.95	2.12	53.80
			2.140	54.36	0.320	8.13	2.13	54.10
			2.156	54.76	0.328	8.33	2.14	54.41
1-1/2	38.10	204F15P	2.172	55.17	0.336	8.53	2.16	54.74
		204S15P	2.188	55.58	0.344	8.74	2.17	55.04
			2.204	55.98	0.352	8.94	2.18	55.35
			2.218	56.34	0.359	9.12	2.19	55.68
1-1/2	38.10	205F15P	2.234	56.74	0.367	9.32	2.21	56.13
		205S15P	2.250	57.15	0.375	9.53	2.22	56.31
			2.266	57.56	0.383	9.73	2.23	56.62
			2.282	57.96	0.391	9.93	2.24	56.92
1-1/2	38.10	206F15P	2.296	58.32	0.398	10.11	2.25	57.24
		206S15P	2.312	58.72	0.406	10.31	2.27	57.55
			2.328	59.13	0.414	10.52	2.28	57.87
			2.344	59.54	0.422	10.72	2.29	58.18

CRIMPING SPECIFICATIONS - 2"

± Recommended crimp % reduction is 20% for all sizes. This is a guide only. Crimp reductions can range from 18-25% and will vary from crimper to crimper. Please consult the NAHAD Industrial Hose Assembly Guidelines. The information that is provided here is based on a 72° F (+22° C) environment.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Hose	I.D.	Ferrule/Sleeve	Hos	e O.D.	Hose Wall	Thickness	Crim	p O.D.
208520P2.37660.350.1884.772.4261.47112.39060.710.1954.952.4361.792.40661.110.2035.162.4462.102.42261.520.2115.362.4462.102.42261.520.2115.362.4462.312.43861.930.2195.562.4762.312.45462.330.2275.772.4863.042.45462.690.2446.152.5163.752.48862.690.2426.152.5263.982.5052.09520P2.50063.500.2506.552.532.5082.09520P2.51663.910.2586.552.5364.302.51863.910.2586.552.5364.302.5082.10520P2.56265.700.2817.142.5764.242.5182.59465.890.2977.542.5965.86250.802.11F20P2.56666.700.3137.552.6266.49250.802.12520P2.65667.460.3288.332.6667.74250.802.12520P2.67267.870.3368.532.6667.74250.802.12520P2.67267.870.3668.532.6667.74250.802.13520P2.71468.680.3528.942.	(in.)	(mm)	Part No.	(in.)	(mm)	(in.)	(mm)	(in.)	(mm)
1 2.390 60.71 0.195 4.95 2.43 61.79 2.406 61.11 0.203 5.16 2.44 62.10 2.422 61.52 0.211 5.36 2.46 62.41 2.438 61.93 0.219 5.66 2.47 62.73 2.454 62.33 0.227 5.77 2.48 63.04 2.468 62.69 0.234 5.94 2.49 63.36 2 50.80 209520P 2.484 63.09 0.242 6.15 2.51 63.75 2 50.80 209520P 2.484 63.09 0.242 6.15 2.51 63.75 2 50.80 210F20P 2.50 63.50 0.260 6.55 2.55 64.92 2 50.80 210F20P 2.546 64.67 0.273 6.93 2.56 65.62 2 50.80 211F20P 2.610 66.29 0.305 7.74 2.61 66.29 </td <td>2</td> <td>50.80</td> <td>208F20P</td> <td>2.360</td> <td>59.94</td> <td>0.180</td> <td>4.57</td> <td>2.41</td> <td>61.16</td>	2	50.80	208F20P	2.360	59.94	0.180	4.57	2.41	61.16
1 1 0.203 5.16 2.44 62.10 2.422 61.52 0.211 5.36 2.46 62.41 2.438 61.93 0.219 5.56 2.47 62.73 2.454 62.33 0.227 5.77 2.48 63.04 2.456 62.69 0.234 5.94 2.49 63.36 2 50.80 209F20P 2.484 63.09 0.242 6.15 2.51 63.75 2 50.80 209F20P 2.484 63.09 0.250 6.35 2.52 63.98 2.516 63.91 0.266 6.76 2.55 64.92 2 50.80 210F20P 2.546 64.67 0.273 6.93 2.66 65.02 2 50.80 211F20P 2.562 65.07 0.281 7.14 2.57 64.24 2.50 50.80 211F20P 2.666 67.06 0.305 7.74 2.61 66.29			208S20P	2.376	60.35	0.188	4.77	2.42	61.47
1 2 2 61.52 0.211 5.36 2.46 62.41 2.438 61.93 0.219 5.56 2.47 62.73 2.454 62.33 0.227 5.77 2.48 63.36 2.50.80 209F20P 2.468 62.69 0.234 5.94 2.49 63.36 2 50.80 209F20P 2.468 63.09 0.242 6.15 2.51 63.37 2 50.80 209F20P 2.468 63.91 0.250 6.35 2.52 64.30 2 50.80 210F20P 2.546 64.67 0.273 6.93 2.56 65.55 2 50.80 210F20P 2.562 65.07 0.281 7.14 2.57 64.92 2 50.80 211F20P 2.610 66.29 0.305 7.74 2.61 66.29 2 50.80 211F20P 2.610 66.29 0.305 7.74 2.61 66.49				2.390	60.71	0.195	4.95	2.43	61.79
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				2.406	61.11	0.203	5.16	2.44	62.10
2.454 62.33 0.227 5.77 2.48 63.04 2 50.80 209F20P 2.468 62.69 0.234 5.94 2.49 63.36 2 50.80 209F20P 2.484 63.09 0.242 6.15 2.51 63.75 2 50.80 209520P 2.500 63.50 0.250 6.35 2.52 63.98 2.0516 63.91 0.258 6.55 2.53 64.30 2.532 50.80 210F20P 2.546 64.67 0.273 6.93 2.56 65.02 2 50.80 210F20P 2.562 65.07 0.281 7.14 2.57 64.24 2.578 65.48 0.289 7.34 2.58 65.55 2 50.80 211F20P 2.610 66.29 0.305 7.74 2.61 66.29 2 50.80 211F20P 2.626 66.70 0.313 7.95 2.62 66.49 <td< td=""><td></td><td></td><td></td><td>2.422</td><td>61.52</td><td>0.211</td><td>5.36</td><td>2.46</td><td>62.41</td></td<>				2.422	61.52	0.211	5.36	2.46	62.41
2.46862.690.2345.942.4963.36250.80209F20P2.48463.090.2426.152.5163.754209S20P2.50063.500.2506.352.5263.982.5050.80210F20P2.51663.910.2666.762.5564.92250.80210F20P2.54664.670.2736.932.5665.02250.80210F20P2.56265.070.2817.142.5764.24250.80211F20P2.56265.070.2817.142.5764.24250.80211F20P2.61066.290.3057.742.5865.56250.80211F20P2.61066.290.3057.742.6166.29250.80211F20P2.61066.290.3337.952.6266.49250.80211F20P2.66667.060.3208.132.6467.12250.80212F20P2.67267.870.3368.532.6667.56250.80212F20P2.67268.680.3528.942.6868.06250.80213F20P2.73469.440.3679.322.7168.83250.80213F20P2.73469.440.3679.322.7168.83250.80213F20P2.75068.850.3759.522.7269.01 </td <td></td> <td></td> <td></td> <td>2.438</td> <td>61.93</td> <td>0.219</td> <td>5.56</td> <td>2.47</td> <td>62.73</td>				2.438	61.93	0.219	5.56	2.47	62.73
2 50.80 209F20P 2.484 63.09 0.242 6.15 2.51 63.75 4 209S20P 2.500 63.50 0.250 6.35 2.52 63.98 2 50.80 210F20P 2.516 63.91 0.258 6.55 2.53 64.30 2 50.80 210F20P 2.546 64.67 0.273 6.93 2.56 65.02 2 50.80 210F20P 2.546 64.67 0.273 6.93 2.56 65.02 2 50.80 210F20P 2.546 65.67 0.281 7.14 2.57 65.86 2 50.80 211F20P 2.610 66.29 0.305 7.74 2.61 66.29 2 50.80 211F20P 2.610 66.70 0.313 7.95 2.62 66.49 2.610 66.70 0.3305 7.74 2.61 66.70 2 50.80 211F20P 2.672 67.87 0				2.454	62.33	0.227	5.77	2.48	63.04
1 209S20P 2.500 63.50 0.250 6.35 2.52 63.98 2 50.80 210F20P 2.516 63.91 0.258 6.55 2.53 64.30 2 50.80 210F20P 2.546 64.67 0.273 6.93 2.56 65.02 2 50.80 210F20P 2.562 65.07 0.281 7.14 2.57 64.24 2 50.80 211F20P 2.662 65.07 0.281 7.14 2.57 64.24 2.573 65.48 0.289 7.34 2.58 65.55 2.50 2.11F20P 2.610 66.29 0.305 7.74 2.61 66.49 2.55 2.594 65.89 0.297 7.54 2.61 66.49 2.50 2.11F20P 2.656 66.70 0.313 7.95 2.62 66.49 2.50 2.11F20P 2.656 67.46 0.328 8.33 2.64 67.56				2.468	62.69	0.234	5.94	2.49	63.36
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	50.80	209F20P	2.484	63.09	0.242	6.15	2.51	63.75
1 2.532 64.31 0.266 6.76 2.55 64.92 2 50.80 210F20P 2.546 64.67 0.273 6.93 2.56 65.02 2 50.80 210S20P 2.562 65.07 0.281 7.14 2.57 64.24 2 50.80 211F20P 2.562 65.07 0.281 7.14 2.58 65.55 2 50.80 211F20P 2.610 66.29 0.305 7.74 2.61 66.29 2 50.80 211F20P 2.610 66.70 0.313 7.95 2.62 66.49 2 50.80 211F20P 2.666 67.46 0.320 8.13 2.63 66.80 2 50.80 212F20P 2.672 67.87 0.336 8.53 2.66 67.74 2 50.80 213F20P 2.672 67.87 0.336 8.53 2.66 68.37 2 50.80 213F20P 2.734<			209S20P	2.500	63.50	0.250	6.35	2.52	63.98
2 50.80 210F20P 2.546 64.67 0.273 6.93 2.56 65.02 4 210S20P 2.562 65.07 0.281 7.14 2.57 64.24 50.80 210S20P 2.578 65.48 0.289 7.34 2.58 65.55 2 50.80 211F20P 2.610 66.29 0.305 7.74 2.61 66.29 2 50.80 211F20P 2.610 66.29 0.305 7.74 2.61 66.29 2 50.80 211S20P 2.626 66.70 0.313 7.95 2.62 66.49 2.640 67.06 0.320 8.13 2.63 66.80 2.650 67.46 0.328 8.33 2.64 67.16 2 50.80 212F20P 2.672 67.87 0.336 8.53 2.66 67.46 2 50.80 213F20P 2.674 68.68 0.352 8.94 2.68 68.37				2.516	63.91	0.258	6.55	2.53	64.30
1 210S20P 2.562 66.07 0.281 7.14 2.57 64.24 2 578 65.48 0.299 7.34 2.58 65.55 2 50.80 211F20P 2.610 66.29 0.305 7.74 2.61 66.29 2 50.80 211F20P 2.610 66.29 0.305 7.74 2.61 66.29 2 50.80 211S20P 2.626 66.70 0.313 7.95 2.62 66.49 2 50.80 212F20P 2.626 67.76 0.328 8.33 2.64 67.12 2 50.80 212F20P 2.672 67.87 0.336 8.53 2.66 67.74 2 50.80 212F20P 2.672 67.87 0.336 8.53 2.66 67.74 2 50.80 213F20P 2.718 69.04 0.359 9.12 2.69 68.37 2 50.80 213F20P 2.734 69.44 <td></td> <td></td> <td></td> <td>2.532</td> <td>64.31</td> <td>0.266</td> <td>6.76</td> <td>2.55</td> <td>64.92</td>				2.532	64.31	0.266	6.76	2.55	64.92
1 2.578 65.48 0.289 7.34 2.58 65.55 2 50.80 211F20P 2.610 66.29 0.305 7.74 2.61 66.29 2 50.80 211F20P 2.610 66.29 0.305 7.74 2.61 66.29 4 2 2.626 66.70 0.313 7.95 2.62 66.49 50.80 211F20P 2.626 66.706 0.320 8.13 2.63 66.80 2 50.80 212F20P 2.672 67.87 0.336 8.53 2.66 67.76 2 50.80 212F20P 2.672 67.87 0.336 8.53 2.66 67.74 2 50.80 212F20P 2.672 67.87 0.336 8.53 2.66 67.74 2 50.80 213F20P 2.672 67.87 0.359 9.12 2.69 68.37 2 50.80 213F20P 2.734 69.44 0.367 </td <td>2</td> <td>50.80</td> <td>210F20P</td> <td>2.546</td> <td>64.67</td> <td>0.273</td> <td>6.93</td> <td>2.56</td> <td>65.02</td>	2	50.80	210F20P	2.546	64.67	0.273	6.93	2.56	65.02
Image: style			210S20P	2.562	65.07	0.281	7.14	2.57	64.24
2 50.80 211F20P 2.610 66.29 0.305 7.74 2.61 66.29 1 211S20P 2.626 66.70 0.313 7.95 2.62 66.49 1 2 2.640 67.06 0.320 8.13 2.63 66.80 2 50.80 212F20P 2.656 67.46 0.328 8.33 2.64 67.12 2 50.80 212F20P 2.672 67.87 0.336 8.53 2.66 67.74 2 50.80 212F20P 2.672 67.87 0.336 8.53 2.66 67.76 2 50.80 212F20P 2.672 67.87 0.336 8.53 2.66 67.74 2 50.80 213F20P 2.688 68.28 0.344 8.74 2.67 66.83 2 50.80 213F20P 2.734 69.44 0.367 9.32 2.71 68.83 2 50.80 213F20P 2.750				2.578	65.48	0.289	7.34	2.58	65.55
1 211S20P 2.626 66.70 0.313 7.95 2.62 66.49 1 2.640 67.06 0.320 8.13 2.63 66.80 2 50.80 212F20P 2.656 67.46 0.328 8.33 2.64 67.12 2 50.80 212F20P 2.672 67.87 0.336 8.53 2.66 67.74 2 50.80 212F20P 2.672 67.87 0.336 8.53 2.66 67.74 4 1 2.704 68.68 0.352 8.94 2.68 68.06 2 50.80 213F20P 2.718 69.04 0.359 9.12 2.69 68.37 2 50.80 213F20P 2.734 69.44 0.367 9.32 2.71 68.83 2 50.80 213F20P 2.750 69.85 0.375 9.52 2.72 69.00 2 50.80 214F20P 2.796 71.02 0.398				2.594	65.89	0.297	7.54	2.59	65.86
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	50.80	211F20P	2.610	66.29	0.305	7.74	2.61	66.29
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			211S20P	2.626	66.70	0.313	7.95	2.62	66.49
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				2.640	67.06	0.320	8.13	2.63	66.80
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				2.656	67.46	0.328	8.33	2.64	67.12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	50.80	212F20P	2.672	67.87	0.336	8.53	2.66	67.56
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			212S20P	2.688	68.28	0.344	8.74	2.67	67.74
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				2.704	68.68	0.352	8.94	2.68	68.06
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				2.718	69.04	0.359	9.12	2.69	68.37
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	50.80	213F20P	2.734	69.44	0.367	9.32	2.71	68.83
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			213S20P	2.750	69.85	0.375	9.52	2.72	69.00
2 50.80 214F20P 2.796 71.02 0.398 10.11 2.75 69.94 1 2 214S20P 2.812 71.42 0.406 10.31 2.77 70.36 1 2 2.828 71.83 0.414 10.51 2.78 70.57 2.844 72.24 0.422 10.72 2.79 70.88				2.766	70.26	0.383	9.73	2.73	69.31
214S20P 2.812 71.42 0.406 10.31 2.77 70.36 2.828 71.83 0.414 10.51 2.78 70.57 2.844 72.24 0.422 10.72 2.79 70.88				2.782	70.66	0.391	9.93	2.74	69.63
2.828 71.83 0.414 10.51 2.78 70.57 2.844 72.24 0.422 10.72 2.79 70.88	2	50.80	214F20P	2.796	71.02	0.398	10.11	2.75	69.94
2.844 72.24 0.422 10.72 2.79 70.88			214S20P	2.812	71.42	0.406	10.31	2.77	70.36
				2.828	71.83	0.414	10.51	2.78	70.57
2 50.80 215E20P 2.860 72.64 0.430 10.92 2.80 71.19				2.844	72.24	0.422	10.72	2.79	70.88
	2	50.80	215F20P	2.860	72.64	0.430	10.92	2.80	71.19
215S20P 2.876 73.05 0.438 11.12 2.82 71.51			215S20P	2.876	73.05	0.438	11.12	2.82	71.51
2.890 73.41 0.445 11.30 2.83 71.82				2.890	73.41	0.445	11.30	2.83	71.82
2.906 73.81 0.453 11.51 2.84 72.13				2.906	73.81	0.453	11.51	2.84	72.13

116

CRIMPING SPECIFICATIONS - 2-1/2"

± Recommended crimp % reduction is 20% for all sizes. This is a guide only. Crimp reductions can range from 18-25% and will vary from crimper to crimper. Please consult the NAHAD Industrial Hose Assembly Guidelines. The information that is provided here is based on a 72° F (+22° C) environment.

Hose	I.D.	Ferrule/Sleeve	Hose	e O.D.	Hose Wall	Thickness	Crim	p O.D.
(in.)	(mm)	Part No.	(in.)	(mm)	(in.)	(mm)	(in.)	(mm)
2-1/2	63.50	302F25P	2.984	75.79	0.242	6.15	3.01	76.45
		302S25P	3.000	76.20	0.250	6.35	3.02	76.71
			3.016	76.61	0.258	6.55	3.03	76.96
			3.032	77.01	0.266	6.76	3.05	77.47
			3.048	77.42	0.274	6.96	3.06	77.72
			3.062	77.77	0.281	7.14	3.07	77.98
			3.078	78.18	0.289	7.34	3.08	78.23
			3.094	78.59	0.297	7.54	3.09	78.49
2-1/2	63.50	303F25P	3.110	78.99	0.305	7.75	3.11	78.99
		303S25P	3.126	79.40	0.313	7.95	3.12	79.25
			3.140	79.76	0.320	8.13	3.13	79.50
			3.156	80.16	0.328	8.33	3.14	79.76
2-1/2	63.50	304F25P	3.172	80.57	0.336	8.53	3.16	80.26
		304S25P	3.188	80.98	0.344	8.74	3.17	80.52
			3.204	81.38	0.352	8.94	3.18	80.77
			3.220	81.79	0.360	9.14	3.19	81.03
2-1/2	63.50	305F25P	3.234	82.14	0.367	9.32	3.21	81.53
		305S25P	3.250	82.55	0.375	9.53	3.22	81.79
			3.266	82.96	0.383	9.73	3.23	82.04
			3.282	83.36	0.391	9.93	3.24	82.30
2-1/2	63.50	307F25P	3.300	83.82	0.400	10.16	3.26	82.80
		307S25P	3.312	84.12	0.406	10.31	3.27	83.06
			3.328	84.53	0.414	10.52	3.28	83.31
			3.344	84.94	0.422	10.72	3.29	83.57
			3.360	85.34	0.430	10.92	3.31	84.07
			3.376	85.75	0.438	11.13	3.32	84.33
			3.390	86.11	0.445	11.30	3.33	84.58
			3.406	86.51	0.453	11.51	3.34	84.84

CRIMPING SPECIFICATIONS

CRIMPING SPECIFICATIONS - 3"

± Recommended crimp % reduction is 20% for all sizes. This is a guide only. Crimp reductions can range from 18-25% and will vary from crimper to crimper. Please consult the NAHAD Industrial Hose Assembly Guidelines. The information that is provided here is based on a 72° F (+22° C) environment.

Hose	I.D.	Ferrule/Sleeve	Hos	e O.D.	Hose Wall	Thickness	Crim	p O.D.
(in.)	(mm)	Part No.	(in.)	(mm)	(in.)	(mm)	(in.)	(mm)
3	76.20	308F30P	3.360	85.34	0.180	4.57	3.47	88.14
		308S30P	3.376	85.75	0.188	4.78	3.48	88.39
			3.392	86.16	0.196	4.98	3.49	88.65
			3.406	86.51	0.203	5.16	3.50	88.90
3	76.20	309F30P	3.422	86.92	0.211	5.36	3.52	89.41
		309S30P	3.438	87.33	0.219	5.56	3.53	89.66
			3.454	87.73	0.227	5.77	3.54	89.92
			3.468	88.09	0.234	5.94	3.55	90.17
			3.484	88.49	0.242	6.15	3.57	90.68
			3.500	88.90	0.250	6.35	3.58	90.93
			3.516	89.31	0.258	6.55	3.59	91.19
			3.532	89.71	0.266	6.76	3.61	91.69
3	76.20	310F30P	3.546	90.07	0.273	6.93	3.62	91.95
		310S30P	3.562	90.47	0.281	7.14	3.63	92.20
			3.578	90.88	0.289	7.34	3.64	92.46
			3.594	91.29	0.297	7.54	3.65	92.71
3	76.20	311F30P	3.610	91.69	0.305	7.75	3.67	93.22
		311S30P	3.626	92.10	0.313	7.95	3.68	93.47
			3.640	92.46	0.320	8.13	3.69	93.73
			3.656	92.86	0.328	8.33	3.70	93.98
3	76.20	312F30P	3.672	93.27	0.336	8.53	3.72	94.49
		312S30P	3.688	93.68	0.344	8.74	3.73	94.74
			3.704	94.08	0.352	8.94	3.74	95.00
			3.718	94.44	0.359	9.12	3.75	95.25
3	76.20	313F30P	3.734	94.84	0.367	9.32	3.77	95.76
		313S30P	3.750	95.25	0.375	9.53	3.78	96.01
			3.766	95.66	0.383	9.73	3.79	96.27
			3.782	96.06	0.391	9.93	3.80	96.52
3	76.20	314F30P	3.796	96.42	0.398	10.11	3.81	96.77
		314S30P	3.812	96.82	0.406	10.31	3.83	97.28
			3.828	97.23	0.414	10.52	3.84	97.54
			3.844	97.64	0.422	10.72	3.85	97.79
3	76.20	315F30P	3.860	98.04	0.430	10.92	3.86	98.04
		315S30P	3.876	98.45	0.438	11.13	3.88	98.55
			3.890	98.81	0.445	11.30	3.89	98.81
			3.906	99.21	0.453	11.51	3.90	99.06
3	76.20	400F30P	3.922	99.62	0.461	11.71	3.91	99.31
		400S30P	3.938	100.03	0.469	11.91	3.93	99.82
			3.954	100.43	0.477	12.12	3.94	100.08
			3.968	100.79	0.484	12.29	3.95	100.33

CRIMPING SPECIFICATIONS - 4"

± Recommended crimp % reduction is 20% for all sizes. This is a guide only. Crimp reductions can range from 18-25% and will vary from crimper to crimper. Please consult the NAHAD Industrial Hose Assembly Guidelines. The information that is provided here is based on a 72° F (+22° C) environment.

Hose	e I.D.	Ferrule/ <mark>Sleeve</mark>	Hose	e O.D.	Hose Wall	Thickness	Crim	p O.D.
(in.)	(mm)	Part No.	(in.)	(mm)	(in.)	(mm)	(in.)	(mm)
4	101.80	409F40P	4.422	112.32	0.211	5.36	4.52	114.81
		409S40P	4.438	112.73	0.219	5.56	4.53	115.06
			4.454	113.13	0.227	5.77	4.54	115.32
			4.468	113.49	0.234	5.94	4.55	115.57
			4.484	113.89	0.242	6.15	4.57	116.08
			4.500	114.30	0.250	6.35	4.58	116.33
			4.516	114.71	0.258	6.55	4.59	116.59
			4.532	115.11	0.266	6.76	4.61	117.09
4	101.80	410F40P	4.546	115.47	0.273	6.93	4.62	117.35
		410S40P	4.562	115.87	0.281	7.14	4.63	117.60
			4.578	116.28	0.289	7.34	4.64	117.86
			4.594	116.69	0.297	7.54	4.65	118.11
4	101.80	411F40P	4.610	117.09	0.305	7.75	4.67	118.62
		411S40P	4.626	117.50	0.313	7.95	4.68	118.87
			4.640	117.86	0.320	8.13	4.69	119.13
			4.656	118.26	0.328	8.33	4.70	119.38
4	101.80	412F40P	4.672	118.67	0.336	8.53	4.72	119.89
		412S40P	4.688	119.08	0.344	8.74	4.73	120.14
			4.704	119.48	0.352	8.94	4.74	120.40
			4.718	119.84	0.359	9.12	4.76	120.90
4	101.80	413F40P	4.734	120.24	0.367	9.32	4.77	121.16
		413S40P	4.750	120.65	0.375	9.53	4.78	121.41
			4.766	121.06	0.383	9.73	4.79	121.67
			4.782	121.46	0.391	9.93	4.80	121.92
4	101.80	414F40P	4.796	121.82	0.398	10.11	4.81	122.17
		414S40P	4.812	122.22	0.406	10.31	4.83	122.68
			4.828	122.63	0.414	10.52	4.84	122.94
			4.844	123.04	0.422	10.72	4.85	123.19
4	101.80	415F40P	4.860	123.44	0.430	10.92	4.86	123.44
		415S40P	4.876	123.85	0.438	11.13	4.88	123.95
			4.890	124.21	0.445	11.30	4.89	124.21
			4.906	124.61	0.453	11.51	4.90	124.46
4	101.80	500F40P	4.922	125.02	0.461	11.71	4.91	124.71
		500S40P	4.938	125.43	0.469	11.91	4.93	125.22
			4.954	125.83	0.477	12.12	4.94	125.48
			4.968	126.19	0.484	12.29	4.95	125.73

WWW.JASONINDUSTRIAL.COM

CRIMPING SPECIFICATIONS

CRIMPING SPECIFICATIONS - 6"

± Recommended crimp % reduction is 20% for all sizes. This is a guide only. Crimp reductions can range from 18-25% and will vary from crimper to crimper. Please consult the NAHAD Industrial Hose Assembly Guidelines. The information that is provided here is based on a 72° F (+22° C) environment.

Hose	I.D.	Ferrule/Sleeve	Hose	e O.D.	Hose Wall	Thickness	Crimp	0.D.
(in.)	(mm)	Part No.	(in.)	(mm)	(in.)	(mm)	(in.)	(mm)
6	152.40	610F60P	6.422	163.12	0.211	5.36	6.58	167.13
		610S60P	6.438	163.53	0.219	5.56	6.59	167.39
			6.454	163.93	0.227	5.77	6.60	167.64
			6.468	164.29	0.234	5.94	6.61	167.89
			6.484	164.69	0.242	6.15	6.63	168.40
			6.500	165.10	0.250	6.35	6.64	168.66
			6.516	165.51	0.258	6.55	6.65	168.91
			6.532	165.91	0.266	6.76	6.67	169.42
			6.546	166.27	0.273	6.93	6.68	169.67
			6.562	166.67	0.281	7.14	6.69	169.93
			6.578	167.08	0.289	7.34	6.70	170.18
			6.594	167.49	0.297	7.54	6.71	170.43
6	152.40	614F60P	6.610	167.89	0.308	7.82	6.73	170.94
		614S60P	6.626	168.30	0.313	7.95	6.74	171.20
			6.640	168.66	0.320	8.13	6.75	171.45
			6.656	169.06	0.328	8.33	6.76	171.70
			6.672	169.47	0.336	8.53	6.78	172.21
			6.688	169.88	0.344	8.74	6.79	172.47
			6.704	170.28	0.352	8.94	6.80	172.72
			6.718	170.64	0.359	9.12	6.81	172.97
			6.734	171.04	0.367	9.32	6.83	173.48
			6.750	171.45	0.375	9.53	6.84	173.74
			6.766	171.86	0.383	9.73	6.85	173.99
			6.782	172.26	0.391	9.93	6.86	174.24
			6.796	172.62	0.398	10.11	6.87	174.50
			6.812	173.02	0.406	10.31	6.89	175.01
			6.828	173.43	0.414	10.52	6.90	175.26
			6.844	173.84	0.422	10.72	6.91	175.51
6	152.40	702F60P	6.860	174.24	0.430	10.92	6.92	175.77
		702S60P	6.876	174.65	0.438	11.13	6.94	176.28
			6.890	175.01	0.445	11.30	6.95	176.53
			6.906	175.41	0.453	11.51	6.96	176.78
			6.922	175.82	0.461	11.71	6.97	177.04
			6.938	176.23	0.469	11.91	6.99	177.55
			6.954	176.63	0.477	12.12	7.00	177.80
			6.970	177.04	0.485	12.32	7.01	178.05
			6.984	177.39	0.492	12.50	7.02	178.31
			7.000	177.80	0.500	12.70	7.04	178.82
			7.016	178.21	0.508	12.90	7.05	179.07
			7.032	178.61	0.516	13.11	7.06	179.32
			7.046	178.97	0.523	13.28	7.07	179.58
			7.062	179.37	0.531	13.49	7.08	179.83
			7.078	179.78	0.539	13.69	7.10	180.34
			7.094	180.19	0.547	13.89	7.11	180.59

CRIMPING SPECIFICATIONS

AT-A-GLANCE FERRULE/SLEEVE SELECTION CHART FOR JASON HOSE & COUPLINGS

Hose	I.D.	Ferrule Part Number	Sleeve Part Number	Min.	O.D.	Мах	O.D.
(in.)	(mm)	Part No.	(in.)	(in.)	(mm)	(in.)	(mm)
1-1/2	38.10	115F15P	115S15P	1.796	45.62	1.906	48.41
1-1/2	38.10	200F15P	200S15P	1.922	48.82	1.968	49.99
1-1/2	38.10	201F15P	201S15P	1.984	50.39	2.020	51.31
1-1/2	38.10	202F15P	202S15P	2.046	51.97	2.094	53.19
1-1/2	38.10	203F15P	203S15P	2.110	53.59	2.156	54.76
1-1/2	38.10	204F15P	204S15P	2.172	55.17	2.218	56.34
1-1/2	38.10	205F15P	205S15P	2.224	56.49	2.282	57.96
1-1/2	38.10	206F15P	206S15P	2.296	58.32	2.344	59.54
2	50.80	208F20P	208S20P	2.360	59.94	2.468	62.69
2	50.80	209F20P	209S20P	2.484	63.09	2.532	64.31
2	50.80	210F20P	210S20P	2.546	64.67	2.594	65.89
2	50.80	211F20P	211S20P	2.610	66.29	2.656	67.46
2	50.80	212F20P	212S20P	2.672	67.87	2.718	69.04
2	50.80	213F20P	213S20P	2.734	69.44	2.782	70.66
2	50.80	214F20P	214S20P	2.796	71.02	2.844	72.24
2	50.80	215F20P	215S20P	2.860	72.64	2.906	73.81
2-1/2	63.50	302F25P	302S25P	2.984	75.79	3.094	78.59
2-1/2	63.50	303F25P	303S25P	3.110	78.99	3.156	80.16
2-1/2	63.50	304F25P	304S25P	3.172	80.57	3.220	81.79
2-1/2	63.50	305F25P	305S25P	3.234	82.14	3.282	83.36
2-1/2	63.50	307F25P	307S25P	3.300	83.82	3.342	84.89
3	76.20	308F30P	308S30P	3.360	85.34	3.406	86.51
3	76.20	309F30P	309S30P	3.422	86.92	3.532	89.71
3	76.20	310F30P	310S30P	3.546	90.07	3.594	91.29
3	76.20	311F30P	311S30P	3.610	91.69	3.656	92.86
3	76.20	312F30P	312S30P	3.672	93.27	3.718	94.44
3	76.20	313F30P	313S30P	3.734	94.84	3.782	96.06
3	76.20	314F30P	314S30P	3.796	96.42	3.844	97.64
3	76.20	315F30P	315S30P	3.860	98.04	3.906	99.21
3	76.20	400F30P	400S30P	3.922	99.62	3.968	100.79
4	101.80	409F40P	409S40P	4.422	112.32	4.532	115.11
4	101.80	410F40P	410S40P	4.546	115.47	4.594	116.69
4	101.80	411F40P	411S40P	4.610	117.09	4.656	118.26
4	101.80	412F40P	412S40P	4.672	118.67	4.718	119.84
4	101.80	413F40P	413S40P	4.734	120.24	4.782	121.46
4	101.80	414F40P	414S40P	4.796	121.82	4.844	123.04
4	101.80	415F40P	415S40P	4.860	123.44	4.906	124.61
4	101.80	500F40P	500S40P	4.922	125.02	4.968	126.19
6	152.40	610F60P	610S60P	6.422	163.12	6.594	167.49
6	152.40	614F60P	614S60P	6.610	167.89	6.844	173.84
6	152.40	702F60P	702S60P	6.860	174.24	7.094	180.19
6	152.40	706F60P	706S60P	7.110	180.59	7.344	186.54

MATERIAL SPECS:

Gaskets are nitrile.

• Aluminum alloy spec ASTM B85 Grade 383.

• Steel handle pins, pull rings and safety clips are zinc-plated.

304 Type stainless steel handles.

CAM & GROOVE COUPLING SPECIFICATIONS

Markets Served:

Chemical • Food • Material Handling • Mining • Petroleum (including Fracking) • Water

Working Pressures (maximum PSI) for Cam and Groove Couplers and Adapters

Size (inch)	Aluminum	Stainless Steel	Brass	Polypropolene
1/2	-	150	-	125
3/4	250	250	250	125
1	250	250	250	125
1-1/4	250	250	250	100
1-1/2	250	250	250	100
2	250	250	250	100
2-1/2	150	150	150	-
3	125	125	125	75
4	100	100	100	60
5	75	75	75	-
6	75	75	75	-
8	50	50	50	-

*Metal coupling pressures are based on ambient temperature (+70°F or +21°C) with standard NBR gasket.

*Plastic coupling pressures are based on ambient temperature (+70°F or +21°C) with standard NBR gasket.

ALUMINUM

FEATURES:

- Sizes 3/4", 1", 1-1/4", 1-1/2", 2", 2-1/2", 3", 4" and 6" are manufactured to comply with Mil Spec A-A-59326D. They will interchange with any coupling manufactured to the same standard.
- Size 5" complies to an ASTM spec. It will interchange to any other coupling manufactured to the same spec.
- The 1/2" and 8" sizes are not specified to any Mil spec.
- The 8" comes in two different styles. That size will interchange as follows:
 - Jason 800 series interchanges with PT Domestic, Kuriyama of America, Dixon Global and Campbell.
 - Jason 801 series interchanges with PT Import, NECO, Dixon Andrews, Evertite/APG, UPD and Sealfast.
- Aluminum body features being lightweight, rigid and having high tensile strength.
- Female couplers are supplied with safety pins.
- Cam arms are 304 Stainless.
- With the exception of the 1/2" size, all other sizes are supplied with safety pins, which will prevent disconnection during use.

BRASS

FEATURES:

- Sizes 3/4", 1", 1-1/4", 1-1/2", 2", 2-1/2", 3", 4" and 6" are manufactured to comply with Mil Spec A-A-59326D. They will interchange with any coupling manufactured to the same standard.
- The 1/2" size is not specified to any Mil spec.
- Brass body has high tensile strength and rigidity.
- With the exception of the 1/2" size, all other sizes are supplied with safety pins, which prevent disconnection during use.

MATERIAL SPECS:

- Brass material meets ASTM B584 Grade C85700 specs.
- 304 Type stainless steel handles and pull rings.
- Steel handle pins, pull rings and safety clips are all zinc-plated.
- Brass handles are forged.
- Gaskets are nitrile.

122

WWW.JASONINDUSTRIAL.COM

COUPLINGS

CAM & GROOVE COUPLINGS

CAM & GROOVE COUPLING SPECIFICATIONS

Markets Served:

Chemical • Food • Material Handling • Mining • Petroleum (including Fracking) • Water

304 STAINLESS STEEL

FEATURES:

- Sizes 3/4", 1", 1-1/4", 1-1/2", 2", 2-1/2", 3", 4" and 6" are manufactured to comply with Mil Spec A-A-59326D. They will
 interchange with any coupling manufactured to the same standard.
- The 1/2" size is not specified to any Mil spec.
- With the exception of the 1/2" size, all other sizes are supplied with safety pins, which will prevent disconnection during use.
- Chemical composition of the alloy is analyzed on every melt.
- Especialy capable for chemical and food applications.

MATERIAL SPECS:

- Coupling body material meets ASTM A666 304 stainless steel specifications.
- 304 Type stainless steel handles, safety pins and rings.
- Gaskets are nitrile.

316 STAINLESS STEEL

FEATURES:

- Sizes 3/4", 1", 1-1/4", 1-1/2", 2", 2-1/2", 3", 4" and 6" are manufactured to comply with Mil Spec A-A-59326D. They will
 interchange with any coupling manufactured to the same standard.
- The 1/2" size is not specified to any Mil spec.
- Chemical composition of the alloy is analyzed on every melt.
- Especialy capable for chemical and food applications.

MATERIAL SPECS:

- Coupling body material meets ASTM A666 316 stainless steel specifications.
- 304 Type stainless steel handles, safety pins and rings.
- Gaskets are nitrile.

POLYPROPYLENE

FEATURES:

- Sizes 3/4", 1", 1-1/4", 1-1/2", 2", 2-1/2", 3", 4" and 6" are manufactured to comply with Mil Spec A-A-59326D. They will interchange with any coupling manufactured to the same standard.
- The 1/2" size is not specified to any Mil spec.

MATERIAL SPECS:

- Black Schedule 80 glass reinforced polypropylene body.
- 304 Type stainless steel handles, safety pins and rings.
- Gaskets are EPDM.

PART A MALE AI

MALE ADAPTER x FEMALE THREAD

Male end fits coupler or Dust Cap. Female thread end is NPT.

	PART NUMBER						
Size (inch)	Aluminum ²	304 Stainless ²	316 Stainless ²	Brass ¹	Black SCH. 80 Polypropylene ²		
1/2	-	A050S	A050SS	-	A050P		
3/4	A075A	A075S	A075SS	A075B	A075P		
1	A100A	A100S	A100SS	A100B	A100P		
1-1/4	A125A	A125S	A125SS	A125B	A125P		
1-1/2	A150A	A150S	A150SS	A150B	A150P		
2	A200A	A200S	A200SS	A200B	A200P		
2-1/2	A250A	A250S	A250SS	A250B	-		
3	A300A	A300S	A300SS	A300B	A300P		
4	A400A	A400S	A400SS	A400B	A400P		
5	A500A	-	-	-	-		
6	A600A	A600S	A600SS	A600B	-		
8	A800A **	-	-	-	-		
8	A801A **	-	-	-	-		

PART B FEMALE COUPLER x MALE THREAD

Female end fits male adapter or Dust Plug. Male end thread is NPT. Bowl has recess for washer replacement.

	PART NUMBER						
Size (inch)	Aluminum ²	304 Stainless ²	316 Stainless ²	Brass ¹	Black SCH. 80 Polypropylene ²		
1/2	-	B050S	B050SS	-	B050P		
3/4	B075A	B075S	B075SS	B075B	B075P		
1	B100A	B100S	B100SS	B100B	B100P		
1-1/4	B125A	B125S	B125SS	B125B	B125P		
1-1/2	B150A	B150S	B150SS	B150B	B150P		
2	B200A	B200S	B200SS	B200B	B200P		
2-1/2	B250A	B250S	B250SS	B250B	-		
3	B300A	B300S	B300SS	B300B	B300P		
4	B400A	B400S	B400SS	B400B	B400P		
5	B500A	-	-	-	-		
6	B600A	B600S	B600SS	B600B	-		
8	B800A **	-	-	-	-		

PART C

FEMALE COUPLER x HOSE SHANK

Female end fits male adapter or Dust Plug. Shank fits into hose ID. Bowl has recess for washer replacement.

**See Page 127 for interchange.

124

Du	dist Flug. Shark his into hose iD. Dow has recess for washer replacement.						
Γ	PART NUMBER						
	Size (inch)	Aluminum ²	304 Stainless ²	316 Stainless ²	Brass ¹	Black SCH. 80 Polypropylene ²	
	1/2	-	C050S	C050SS	-	C050P	
	3/4	C075A	C075S	C075SS	C075B	C075P	
	1	C100A	C100S	C100SS	C100B	C100P	
	1-1/4	C125A	C125S	C125SS	C125B	C125P	
	1-1/2	C150A	C150S	C150SS	C150B	C150P	
	2	C200A	C200S	C200SS	C200B	C200P	
	2-1/2	C250A	C250S	C250SS	C250B	-	
	3	C300A	C300S	C300SS	C300B	C300P	
	4	C400A	C400S	C400SS	C400B	C400P	
	5	C500A	-	-	-	-	
	6	C600A	C600S	C600SS	C600B	-	
	8	C800A **	-	-	-	-	
	8	C801A **	-	-	-	-	

MARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.

¹Brass products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov ²This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

CAM & GROOVE COUPLINGS

PART D FEMALE COUPLER x FEMALE THREAD

Female end fits male adapter or Dust Plug. Female end thread is NPT. Bowl has recess for washer replacement.

1000	Size	Part Number						
	(inch)	Aluminum ²	304 Stainless ²	316 Stainless ²	Brass ¹	Black SCH. 80 Polypropylene ²		
	1/2	-	D050S	D050SS	-	D050P		
	3/4	D075A	D075S	-	D075B	D075P		
	1	D100A	D100S	D100SS	D100B	D100P		
10	1-1/4	D125A	D125S	D125SS	D125B	D125P		
	1-1/2	D150A	D150S	D150SS	D150B	D150P		
1	2	D200A	D200S	D200SS	D200B	D200P		
(2-1/2	D250A	D250S	D250SS	D250B	-		
	3	D300A	D300S	D300SS	D300B	D300P		
	4	D400A	D400S	D400SS	D400B	D400P		
	5	D500A	-	-	-	-		
	6	D600A	D600S	D600SS	D600B	-		
	8	D800A **	-	-	-	-		
	8	D801A **	-	-	-	-		

PART E MALE ADAPTER x HOSE SHANK

Male end fits female coupler or Dust Cap. Shank fits into hose ID.

Size	Part Number						
(inch)	Aluminum	304 Stainless	316 Stainless	Brass ¹	Black SCH. 80 Polypropylene ²		
1/2	-	E050S	E050SS	-	E050P		
3/4	E075A	E075S	E075SS	E075B	E075P		
1	E100A	E100S	E100SS	E100B	E100P		
1-1/4	E125A	E125S	E125SS	E125B	E125P		
1-1/2	E150A	E150S	E150SS	E150B	E150P		
2	E200A	E200S	E200SS	E200B	E200P		
2-1/2	E250A	E250S	E250SS	E250B	-		
3	E300A	E300S	E300SS	E300B	E300P		
4	E400A	E400S	E400SS	E400B	E400P		
5	E500A	-	-	-	-		
6	E600A	E600S	E600SS	E600B	-		
8	E800A **	-	-	-	-		
8	E801A **	-	-	-	-		

MALE ADAPTER x MALE THREAD

Male end fits female coupler or Dust Cap. Male end thread is NPT.

PART F

	Size	Part Number					
	(inch)	Aluminum	304 Stainless	316 Stainless	Brass ¹	Black SCH. 80 Polypropylene ²	
	1/2	-	F050S	F050SS	-	F050P	
	3/4	F075A	F075S	F075SS	F075B	F075P	
	1	F100A	F100S	F100SS	F100B	F100P	
	1-1/4	F125A	F125S	F125SS	F125B	F125P	
	1-1/2	F150A	F150S	F150SS	F150B	F150P	
	2	F200A	F200S	F200SS	F200B	F200P	
	2-1/2	F250A	F250S	F250SS	F250B	-	
	3	F300A	F300S	F300SS	F300B	F300P	
	4	F400A	F400S	F400SS	F400B	F400P	
	5	F500A	-	-	-	-	
•	6	F600A	F600S	F600SS	F600B	-	
	8	F800A **	-	-	-	-	

**See Page 127 for interchange.

WARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.

¹Brass products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov ²This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

CAM & GROOVE COUPLINGS

PART DC

DUST CAP

Fits male adapters.

Size	Part Number					
(inch)	Aluminum ²	304 Stainless ²	316 Stainless ²	Brass ¹	Black SCH. 80 Polypropylene ²	
1/2	-	DC050S	DC050SS	-	DC050P	
3/4	DC075A	DC075S	DC075SS	DC075B	DC075P	
1	DC100A	DC100S	DC100SS	DC100B	DC100P	
1-1/4	DC125A	DC125S	DC125SS	DC125B	DC125P	
1-1/2	DC150A	DC150S	DC150SS	DC150B	DC150P	
2	DC200A	DC200S	DC200SS	DC200B	DC200P	
2-1/2	DC250A	DC250S	DC250SS	DC250B	-	
3	DC300A	DC300S	DC300SS	DC300B	DC300P	
4	DC400A	DC400S	DC400SS	DC400B	DC400P	
5	DC500A	-	-	-	-	
6	DC600A	DC600S	DC600SS	DC600B	-	
8	DC800A **	-	-	-	-	

Black SCH. 80

DP075P

DP100P

DP125P

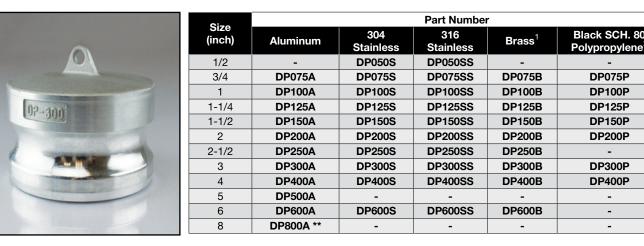
DP150P

DP200P

DP300P

DP400P

_


-

-

PART DP

DUST PLUG

Fits male adapters.

**See Page 127 for interchange.

WARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.

Brass products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov ²This products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

SERIES 800 & SERIES 801 - 8" CAM & GROOVE INTERCHANGE

Not all cam and groove couplings are interchangeable. At the 8" size, there are now two distinct designs. Jason has you covered on both types. See the charts below to interchange to the proper style coupling.

800 Series interchanges with: PT Domestic, Kuriyama of America, Dixon Global and Campbell			
Part Numbers			
A800A	E800A		
B800A	F800A		
C800A	DC800A		
D800A	DP800A		

801 Series interchanges with: Dixon Andrews, NECO, Evertite/APG, PT Import, UPD and Sealfast				
Part Numbers				
A801A	E801A			
*B801A	F801A			
C801A	DC801A			
D801A	DP801A			

*Check with customer service for availability.

ANTI-LEAK ALUMINUM C x E CAM-LOCK COUPLINGS

This unique cam-lock employs a patented design that relies on two bands of rubber that act as a type of gasket surrounding two specific grooves on the cam-lock shank. When the hose wall is compressed against the bands of rubber, a preventive barrier is formed reducing the chance for leaks around the couplings.

	Size (inch)	Part Number
1-1/2	Part C	C150ALF
2	Part C	C200ALF
3	Part C	C300ALF
4	Part C	C400ALF
6	Part C	C600ALF
1-1/2	Part E	E150ALF
2	Part E	E200ALF
3	Part E	E300ALF
4	Part E	E400ALF
6	Part E	E600ALF

REPLACEMENT BANDS - NITRILE					
Inside Diameter (inch) :	1-1/2	2	3	4	6
Part Number :	RB15NBR	RB20NBR	RB30NBR	RB40NBR	RB60NBR

/ This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

PART DCL DUST CAP WITH LOCK OUT HANDLES

Handles fold over top of cap. Hole provided for padlock or seal. Padlock or seal not furnished.

Size	Part Number			
(inch)	Aluminum with stainless steel handles	Stainless Steel with stainless steel handles		
1-1/4	DCL125A	DCL125S		
1-1/2	DCL150A	DCL150S		
2	DCL200A	DCL200S		
2-1/2	DCL250A	DCL250S		
3	DCL300A	DCL300S		
4	DCL400A	DCL400S		
6	DCL600A	DCL600S		

🔥 This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

JASON[®] **CAM & GROOVE COUPLINGS** TRIAL

D

E

REDUCING CAM & GROOVE COUPLINGS & ADAPTERS

Aluminum¹

A2015A

Aluminum¹

B1510A

B2015A

B2030A

B3020A

B3040A

B4030A

B6040A

Stainless

Steel¹

_

-

-

-

-

Stainless

Steel¹

_

-

_

_

-

_

2 x 2 -A2020S A2030A 2 x 3 A3020A 3 x 2 A3040A 3 x 4 4 x 3 A4030A A4060A 4 x 6 6 x 4 A6040A

Size

(inch)

1-1/2 x 1

2 x 1-1/2

2 x 3

3 x 2

3 x 4

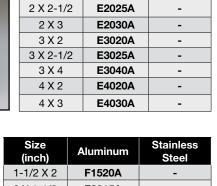
4 x 3

6 x 4

Size

(inch)

2 x 1-1/2


Size Stainless Aluminum¹ (inch) Steel¹ 2 x 1-1/2 C2015A _ C3020A 3 x 2 -3 X 2-1/2 C3025A _ 3 x 4 C3040A _ 4 x 3 C4030A -

Coupler x Hose Shank

Size (inch)	Aluminum	Stainless Steel
1 x 1	AA1010A	AA1010S
1-1/2 x 1-1/2	AA1515A	AA1515S
1-1/2 x 2	AA1520A	AA1520S
2 x 2	AA2020A	AA2020S
2 x 2-1/2	AA2025A	-
2 x 3	AA2030A	AA2030S
2-1/2 X 2-1/2	AA2525A	-
3 x 3	AA3030A	AA3030S
3 x 4	AA3040A	AA3040S
4 x 4	AA4040A	AA4040S
4 x 6	AA4060A	-
6 x 6	AA6060A	-

Aluminum¹

D1510A

D2015A

D3020A

D4030A

Aluminum

E2015A

Stainless

Steel¹

-

_

_

-

Stainless

Steel

2 X 1-1/2 F2015A _ 2 X 3 F2030A -3 X 2 F3020A -3 X 4 F3040A _ 4 X 3 F4030A _ 4 X 6 F4060A -

Size (inch)	Aluminum ¹	Stainless Steel ¹
1-1/2 X 2	DA1520A	-
2 X 1-1/2	DA2015A	-
2 X 3	DA2030A	DA2030S
2 X 4	DA2040A	-
3 X 1-1/2	DA3015A	-
3 X 2	DA3020A	DA3020S
3 X 4	DA3040A	-
4 X 2	DA4020A	-
4 X 3	DA4030A	DA4030S
4 X 6	DA4060A	-
6 X 4	DA6040A	DA6040S
6 X 5	DA6050A	-
8 X 6	DA8060A	-

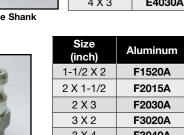
¹This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

All sizes may not be stocked in all locations. Check with customer service for availability.

We disclaim any liability for use of our products in applications other than which they are designed.

Size (inch)	Aluminum ¹	Stainless Steel ¹
1-1/2 x 1-1/2	DD1515A	DD1515S
2 x 2	DD2020A	DD2020S
2 x 3	DD2030A	-
3 x 3	DD3030A	DD3030S
3 x 4	DD3040A	-
4 x 4	DD4040A	DD4040S

COUPLINGS



Adapter x Male NPT

Coupler x Female NPT

Size

(inch)

1-1/2 x 1

2 x 1-1/2

3 X 2

4 X 3

Size

(inch)

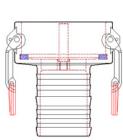
2 x 1-1/2

CAM & GROOVE COUPLINGS

CAM & GROOVE COUPLINGS - VAPOR RECOVERY

To keep fumes from escaping into the atmosphere, use these fittings on the vapor return lines. Aluminum Body • Brass Handles • Buna N Gasket • Probe is Solid Brass • Rated to 100 PSI WP

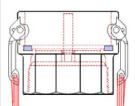
TYPE C FEMALE COUPLER x HOSE SHANK^{1,2}



R
P

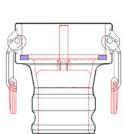
Part Number	Size (inch)	Description
C4030AVP	4 x 3	4" Coupler w/Probe x 3" Hose Shank
C300AVP	3	3" Coupler w/Probe x 3" Hose Shank
C400AVP	4	4" Coupler w/Probe x 4" Hose Shank

TYPE C FEMALE COUPLER x HOSE SHANK - CRIMP FITTING¹²



Part Number	Size (inch)	Description
C4030AVPC	4 x 3	4" Coupler w/Probe x 3" Hose Shank
C300AVPC	3	3" Coupler w/Probe x 3" Hose Shank
C400AVPC	4	4" Coupler w/Probe x 4" Hose Shank

TYPE D FEMALE COUPLER x FEMALE THREAD^{1,2}



Part Number	Size (inch)	Description
D4030AVP	4 x 3	4" Coupler w/Probe x 3" Female Thread
D300AVP	3	3" Coupler w/Probe x 3" Female Thread
D400AVP	4	4" Coupler w/Probe x 4" Female Thread

TYPE DA FEMALE COUPLER x ADAPTER^{1,2}

Part Number	Size (inch)	Description
DA4030AVP	4 x 3	4" Coupler w/Probe x 3" Adapter

MARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.

¹Brass products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov ²This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

TANK TRUCK API ADAPTERS, CAPS, COUPLERS & GASKETS

For offloading through the API adapter and coupler.

Used to protect the face of poppet side of the API adapter. Comes with a nitrile gasket. Suitable for all API valves that meet API RP-1004 specs.

Size (inch)	Part Number	Description	Material
4	DC400ATC	API Dust Cap	Aluminum
4	DC400PPTC	API Dust Cap	Polypropylene

COUPLER x ADAPTER²

Used in the process of unloading in order to connect the 4" API adapter to the 3" or 4" hose connection. Used primarily in gravity flow applications. Mates with 4" API RP-1004 tank truck adapters. Adapter comes with aluminum body and nitrile gasket. Angled down for better drainage.

Size (inch)	Part Number	Description	Material
4 x 3	DA4030ATC	4" API Coupler x 3" Adapter	Aluminum
4 x 4	DA4040ATC	4" API Coupler x 4" Adapter	Aluminum

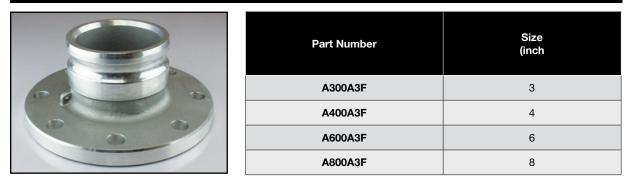
COUPLER x COUPLER²

This gravity drop coupler is designed to use gravity for quick and complete off-loading. Mates with all API RP-1004 bottom loading adapters. This coupler has an aluminum body and nitrile gaskets. Angled down for better drainage.

Size (inch)	Part Number	Description	Material
4 x 4	DD4040ATC	4" API Coupler x 4" Coupler	Aluminum

REPLACEMENT GASKET ²	Size (inch)	Part Number	Description	Material
	4	G400NBRTC	Gasket for 4" API Coupler	Nitrile

WARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.


¹Brass products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov ²This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

CAM & GROOVE COUPLINGS

FLAT FACE FLANGE COUPLINGS - 150 PSI

PART A - Male Adapter x Flat Face Flange

ASTM BOLT SIZES

PART D - Female Coupler x Flat Face Flange²

ASTM BOLT SIZES

Part Number	Size (inch
D300A3F	3
D400A3F	4
D600A3F	6
D800A3F	8

ACCESSORIES FOR CAM & GROOVE COUPLINGS

Part Number	Item	Description
SPWS	Safety Pin	Fits sizes 1/2" thru 5 "
SPXS	Safety Pin	Fits sizes 6" thru 8 "
CH12S	Security Chain	Stainless steel; 12"

WARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.

¹Brass products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov ²This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

CAM & GROOVE COUPLINGS

REPLACEMENT GASKETS FOR CAM & GROOVE COUPLINGS

	Black	White	Standard			Gaske	et Dimensio	ons	
Size	NBR ²	NBR	Bio-Fuel ²	Inside D	iameter	Outside D	Diameter	Thic	kness
		FDA		inch	mm	inch	mm	inch	mm
1/2	S050N	-	-	0.688	17.46	1.031	26.19	0.156	3.96
3/4	S075N	-	-	0.875	22.23	1.375	34.93	0.218	5.54
1	S100N	-	-	1.063	27.00	1.563	39.70	0.250	6.35
1-1/4	S125N	-	-	1.359	34.52	1.938	49.23	0.250	6.35
1-1/2	S150N	S150NF	S150BFR	1.625	41.28	2.188	55.58	0.250	6.35
2	S200N	S200NF	S200BFR	2.000	50.80	2.625	66.68	0.250	6.35
2-1/2	S250N	-	-	2.375	60.33	3.125	79.38	0.250	6.35
3	S300N	S300NF	S300BFR	3.000	76.20	3.719	94.46	0.250	6.35
4	S400N	S400NF	S400BFR	4.000	101.60	4.875	123.83	0.250	6.35
5	S500N	-	-	4.875	123.83	5.938	150.83	0.250	6.35
6	S600N	-	S600BFR	6.000	152.40	7.063	179.40	0.250	6.35
8	S800N	-	-	8.125	206.38	9.313	236.55	0.343	8.71

NOTE: Standard Bio-Fuel Gasket comes with one red stripe.

0:	Heavy Duty			Outside [Diameter	Thickness	
Size	Bio-Fuel Part Number ²	inch	mm	inch	mm	inch	mm
2	S200HBFR	2.000	50.80	2.625	66.68	0.278	7.05
3	S300HBFR	3.000	76.20	3.719	94.46	0.278	7.05
4	S400HBFR	4.000	101.60	4.875	123.83	0.278	7.05

NOTE: Heavy Duty Bio-Fuel Gasket comes with two blue stripes.

REPLACEMENT HANDLES FOR CAM & GROOVE COUPLINGS

Size (inch)	1	1-1/4	1-1/2	2	2-1/2	3	4	6	8
Brass ¹	HRP10B	HRP12B	HRP15B	HRP20B	HRP25B	HRP30B	HRP40B	HRP60B	HRP80B
304 Stainless Steel	HRP10S	HRP12S	HRP15S	HRP20S	HRP25S	HRP30S	HRP40S	HRP60S	-
Lock-Out 304 Stainless Steel	-	-	LHP150S	LHP200S	LHP250S	LHP300S	LHP400S	LHP600S	-

MARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.

¹Brass products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov ²This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

PIN LUG COUPLINGS

Threaded couplings for suction or discharge of water or other fluids. Standard threading is NPSM; National Pipe Straight Mechanical. 1-1/2" and 2-1/2" are available with additional NST thread; American National Fire Hose Straight Thread. (NST does not interchange). Pin lugs are on all sizes of female end. 2-1/2" through 6" also have pin lugs on male end.

SET (M x F) PIN LUG SHANK COUPLINGS

	Size (inch)	Thread	Aluminum with Brass Swivel
	1-1/2	NPSM	AB150
	1-1/2	NST	AB150NST
->	2	NPSM	AB200
	2-1/2	NPSM	AB250
	2-1/2	NST	AB250NST
The second se	3	NPSM	AB300
	4	NPSM	AB400
	6	NPSM	AB600

Iron Pin Lug Couplings available by special order.

FEMALE PIN LUG SHANK COUPLINGS

_	Size (inch)	Thread	Aluminum with Brass Swivel
	1-1/2	NPSM	AB150F
~	1-1/2	NST	AB150NSTF
	2	NPSM	AB200F
	2-1/2	NPSM	AB250F
	2-1/2	NST	AB250NSTF
	3	NPSM	AB300F
2	4	NPSM	AB400F
	6	NPSM	AB600F

ANTI-LEAK PIN LUG COUPLINGS' - FOR LAYFLAT HOSE

	Size (inch)	Thread	Aluminum with Brass Swivel
5.	1-1/2	NPSM	AB150LF
	2	NPSM	AB200LF
-15	3	NPSM	AB300LF
	4	NPSM	AB400LF

REPLACEMENT WASHERS FOR PIN LUG SHANK COUPLINGS²

Coupling Size (inch)	1-1/2	2	2-1/2	2-1/2 NST	3	4	6
Part Number	HW150	HW200	HW250	HW250NST	HW300	HW400	HW600

WARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.

1 Brass products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov ² This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

UNIVERSAL AIR COUPLINGS

UNIVERSAL AIR COUPLINGS - 2 LUG

Used to connect air lines from compressors or other air source to all types of pneumatic tools and equipment. All 2 lug head connections are of one size for easy interchange. Hose shank or threaded end is coupling size. Male and Female threads are NPT. Malleable iron plated. (European style universals available special order.)

Application of Universal Crowfoot Air Hose Couplings

Universal crowfoot couplings are recommended to be used in the transfer of air and or water. The application should be in an open system where the air or water is in motion (dynamic) and not in a closed pressurized (static) condition. This dynamic application involves continuous flow, therefore, back pressure would be relieved by the very nature of the application. The applicable system should contain pressure relief valves to relieve any excess pressure. Safety clips and safety cables should be installed on either side of the coupling connection.

The rated, maximum working pressure of Universal Crowfoot Air Hose Couplings is 150 psi (at ambient temperature [70°F]) for all parts: HE, ME, FE.

WARNING: Universal Air Hose Couplings should NEVER be used for steam service.

HOSE END¹

Hose End Size	Iron Part No.
3/8"	HE038
1/2"	HE050
3/4"	HE075
1"	HE100

MALE END¹

Hose End Size	Iron Part No.						
1/4"	ME025						
3/8"	ME038						
1/2"	ME050						
3/4"	ME075						
1"	ME100						

FEMALE END

Hose End	Iron
Size	Part No.
1/4"	FE025
3/8"	FE038
1/2"	FE050
3/4"	FE075
1"	FE100

WHIPCHECK SAFETY CABLES

Cable	Hose I.D.	Part No.
1/8" x 20"	1/2" to 1-1/4"	HHWC1
1/4" x 38"	1-1/2" to 3"	HHWC2
3/8" x 44"	1-1/2" to 4"	HHWC4

Prevent hose whip in case of accidental separation of coupling or clamp device.

Cable	Hose I.D.	Part No.		
1/8" x 20"	1/2" to 1-1/4"	HTWS1		
1/4" x 38"	1-1/2" to 3"	HTWS2		

1 This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

WWW.JASONINDUSTRIAL.COM

UNIVERSAL AIR COUPLINGS

UNIVERSAL AIR COUPLINGS - 4 LUG

HOSE END

Hose End Size	Iron Part No.
1-1/4"	HE125
1-1/2	HE150
2	HE200

FEMALE END					
Hose End Size	Iron Part No.				
1-1/4"	FE125				
1-1/2	FE150				
2	FE200				

Item	Part Number
Washer for 4 Lug Universal ¹	UG4

UNIVERSAL AIR COUPLING ACCESSORIES

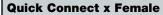
Item	Part Number
3/4" 3-Way Connector ¹ Uses 3 sets of 2-lug connector to provide an extra outlet from one air source. Malleable Iron Plated	тwс
Item	Part Number
Dead End ¹ Fits 2-lug head on universal couplings to block line. Hole in flat portion allows for securing dead end when not in use. Malleable Iron Plated	BEC
Item	Part Number
Safety Pin & Lanyard	SPL

1 This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

COUPLINGS

AIR COUPLERS

INDUSTRIAL QUICK CONNECT AIR COUPLERS


Quick Connect x Male

FEMALE

MALE

HOSE END

Quick Connect x Hose End

Plug x Female

FEATURES

- Meets MIL-C-4109.
- All brass.
- Max inlet pressure is 300 PSI (20.7 BAR).
- Air flow is 40 SCFM.
- Seals are Buna-N.

	Jim		K
Plug x	Male		
0			

Part No.	Description					
QCF04B	Quick Connect x Female 1/4" NPT					
QCM04B	Quick Connect x Male 1/4" NPT					
QCF06B	Quick Connect x Female 3/8" NPT					
QCM06B	Quick Connect x Male 3/8" NPT					
QCH04B	Quick Connect x Hose End1/4" (Barbed)					
QCH06B	Quick Connect x Hose End 3/8" (Barbed)					
QPF04B	Plug x Female 1/4" NPT					
QPM04B	Plug x Male 1/4" NPT					
QPF06B	Plug x Female 3/8" NPT					
QPM06B	Plug x Male 3/8" NPT					
QPH04B	Plug x Hose End 1/4" (Barbed)					
QPH06B	Plug x Hose End 3/8" (Barbed)					

COMPETITIVE PART NUMBER INTERCHANGE

Jason	Milton	Amflo	ARO	Coil Hose	Dixon	Forney	Lincoln	NAPA	Parker	Truflate
QCF04B	715	C20	MSCF22-000	150	DC20	75317	632004	90-670	B23	13-235
QCM04B	716	C21	MSCM22-000	152	DC21	75316	-	90-672	B22	13-224
QCF06B	718	C20-23	MSCF23-000	151	DC2023	75479	-	90-667	B23E	13-236
QCM06B	719	C21-03	MSCM23-000	155	DC2103	-	-	90-657	B22E	13-226
QCH04B	717	C20-42	MSCH22-000	153	DC2042	75480	-	90-671	B20-3B	13-264
QCH06B	717-6	C20-44	MSCH23-000	-	DC2044	-	-	-	-	13-266
QPF04B	728	CP20	23902-200	1502	DCP20	75302	630204	90-676	НЗС	12-234/12-235
QPM04B	732	CP20-23	23902-300	1505	DCP2023	-	-	90-659	H3C-E	12-236
QPF06B	727	CP21	23902-210	1501	DCP21	75301	630104	90-674	H2C	12-224/12-225
QPM06B	733	CP21-03	23902-310	1503	DCP2103	75471	-	90-677	H2C-E	12-226
QPH04B	736	CP21-42	23902-220	1506	DCP2142	-	-	90-673	H8C	12-264
QPH06B	736-6	CP21-44	23902-420	1508	DCP2144	-	-	-	H9C	12-266

Brass products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

136

 \wedge

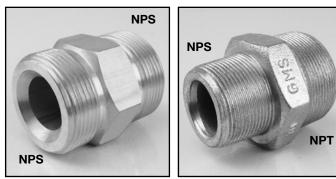
GROUND JOINT COUPLINGS

GROUND JOINT COUPLINGS

An all purpose coupling, the female ground joint consists of a MALE STEM, WING NUT and FEMALE SPUD. The female spud has NPT threads to accept the NPT threads of a rigid connection or male NPT nipple. **Widely used for air, water or steam, the ground joint is secured with an interlocking clamp.**

By replacing the female spud of a ground joint coupling with a double or male spud, hose to hose ground joint connections or hose to rigid connections are simplified. Double spuds for hose to hose connections are threaded NPS MALE X NPS MALE. (GJ wing nut is also NPS). For hose to rigid connection, the male spud is threaded NPS MALE X NPT MALE.

GROUND JOINT FEMALE


Hose Size* (inch)	Part No.
1/2	GJ050F
3/4	GJ075F
1	GJ100F
1-1/4	GJ125F
1-1/2	GJ150F
2	GJ200F
2-1/2	GJ250F
3	GJ300F
4	GJ400F

FEMALE SPUD¹

Hose Size* (inch)	Part No.
1/2	GFS050
3/4	GFS075
1	GFS100
1-1/4	GFS125
1-1/2	GFS150
2	GFS200
2-1/2	GFS250
3	GFS300
4	GFS400

*Size also represents Wing Nut and Spud thread size.

DOUBLE SPUD

Hose Size* (inch)	Double Spud Part Number	Male Spud Part Number
1/2	GDS050	GMS050
3/4	GDS075	GMS075
1	GDS100	GMS100
1-1/4	GDS125	GMS125
1-1/2	GDS150	GMS150
2	GDS200	GMS200

COUPLINGS

SANDBLAST HOSE COUPLINGS

There are three active sandblast system couplings; HOSE ENDS which are used to make hose to hose connections or hose to blast pot connections, NOZZLE HOLDERS that accept the male threaded end of a sandblast nozzle, and the THREADED POT END that is connected to the combination air and abrasive mix from the sandblast pot. All three are available in aluminum or brass. Hose ends are also available in Iron.

HOSE ENDS are sleeve type couplings that fit over the OD of the sandblast hose. They are secured to the hose with wood screws. Countersunk holes on the hose end ensure that the screws fit correctly and will not be snagged while the hose is in operation. Within the ID of the hose end is a corkscrew ridge that helps to twist the coupling onto the hose and more importantly, helps to minimize the force of blow-back. Hose-to-hose or hose-to-pot connections are made by the 2 lug crowfoot design. No matter what the hose size, the 2 log hose ends interchange for common connections.

NOZZLE HOLDERS are sleeve type couplings, secured to the hose with wood screws and have the same features as the sandblast hose end. The exception is that the end of the nozzle holder is NPT threaded to accept the sandblasting nozzle.

1-1/4" to 11.5" NPSM threads - All sizes

THREADED POT ENDS do not fit the hose, but rather are threaded (NPT or NPS) onto the sandblast pot. Once properly threaded to the discharge pipe on the pot, the 2 lug crowfoot design can now be connected to the 2 lug crowfoot design of the hose end. Now the pot can supply mix to the operator by way of the hose to the sandblast nozzle.

ŀ	Hose				Nozzle Holder			
Inside Diameter (inch)	Outside Diameter (inch)	Aluminum ²	Quick End Brass ¹	Aluminum ²	Brass ¹			
3/4	1-1/2	Q1A	Q1B	NH1A	NH1B			
1	1-7/8	Q2A	Q2B	NH2A	NH2B			
1-1/4	2-5/32	Q3A	Q3B	NH3A	NH3B			
1-1/2	2-3/8	Q4A	Q4B	NH4A	NH4B			

Thread	Tires	Threaded Pot End		
Size	Туре	Aluminum ²	Brass ¹	
1-1/4	NPT	SB1A	SB1B	
1-1/4	NPS	SB10A	SB10B	
1-1/2	NPT	SB2A	SB2B	
1-1/2	NPS	SB20A	SB20B	

Item	Part Number
GASKETS ² Replacement gaskets for metal hose end/pot end. One size fits all.	QW

WARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.

¹Brass products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov ²This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

LOCKING LEVER PUMP COUPLINGS

"BAUER" STYLE LOCKING LEVER PUMP COUPLINGS

- Full Vacuum Rated
- Type B Industrial
- Lock Pin Lever
- Galvanized

MALE BALL x SHANK

Size

(inch)

2

3

4

6

8

Part No.

BMS200

BMS300

BMS400

BMS600

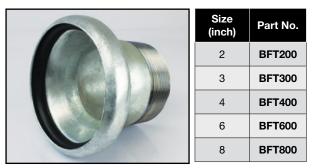
BMS800

- NBR O-Ring
- Interchangeable with Bauer type*
- Quick and Easy Connections

FEMALE SOCKET x SHANK¹

(includes O-Ring)

Size (inch)	Part No.
2	BFS200
3	BFS300
4	BFS400
6	BFS600
8	BFS800


MALE BALL x NPT THREAD

Size (inch)	Part No.
2	BMT200
3	BMT300
4	BMT400
6	BMT600
8	BMT800

FEMALE SOCKET x NPT THREAD

(includes O-Ring)

O-RING¹ (NBR)

Not recommended for chemicals or hazardous materials.

1 This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

*This product is not made or endorsed by Bauer Couplings Par Group

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed. WWW.JASONINDUSTRIAL.COM

LOCKING LEVER PUMP COUPLINGS

"BAUER" STYLE LOCKING LEVER PUMP COUPLINGS

- Full Vacuum Rated
- Type B Industrial
- Lock Pin Lever
- Galvanized

FULL ASSEMBLY¹

(includes O-Ring)

Size

(inch)

2

3

4

8

Part No.

BGA200 BGA300

BGA400

BGA600 BGA800

- 30° Articulation
- NBR O-Ring
- Interchangeable with Bauer type*
- Quick and Easy Connections

LEVER RING (with safety clip)

	Size (inch)	Part No.
	2	BLR200
A Maria	3	BLR300
i ii	4	BLR400
	6	BLR600
	8	BLR800

MALE BALL x FLANGE (150 ASA)

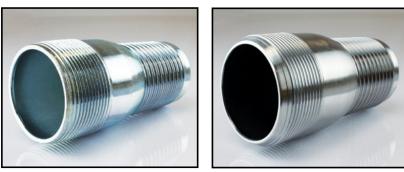
Not recommended for chemicals or hazardous materials.

FEMALE SOCKET* x FLANGE (150 ASA)¹

(includes O-Ring)

150 ASA FLANGE DIMENSIONS

Size		Bolt Circle Diameter		No. of Bolts	Diameter of Bolts		Diameter of Flange Bolt Holes O.D.		Wei	ght		
inch	mm	inch	mm		inch	mm	inch	mm	inch	mm	lbs.	kg.
4	101.60	7-1/2	190.50	8	5/8	15.88	3/4	19.05	9	228.60	13	29.25
6	152.40	9-1/2	241.30	8	3/4	19.05	7/8	22.23	11	279.40	19-1/2	43.88
8	203.20	11-3/4	298.45	8	3/4	19.05	7/8	22.23	13-1/2	342.90	30	67.50


1 This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

*This product is not made or endorsed by Bauer Couplings Par Group

WWW.JASONINDUSTRIAL.COM

NIPPLES & ACCESSORIES

COMBINATION HOSE NIPPLES

PLATED

POLYPROPYLENE¹

VICTAULIC TYPE

CN's are used in a variety of fluid applications. They are available in unplated steel, plated steel, polypropylene, victaulic type and 304 stainless steel. End (male) threads are NPT (will mate with foot valves, strainers, cam and groove part A, D etc.) and are the same size as shank. **Not for use with crimp ferrule.**

COMBINATION HOSE NIPPLES - PART NUMBERS									
Hose I.D. (inch)	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2		
Unplated	CN050	CN075	CN100	CN125	CN150	CN200	CN250		
Plated	CN050P	CN075P	CN100P	CN125P	CN150P	CN200P	CN250P		
304 Stainless	CN050S	CN075S	CN100S	CN125S	CN150S	CN200S	CN250S		
Polypropylene*1	CN050PP	CN075PP	CN100PP	CN125PP	CN150PP	CN200PP	CN250PP		
Victaulic Type	-	-	-	-	-	CN200V	-		
	- I	l.		1					
Hose I.D. (inch)	3	4	5	6	8	10	12		
IInnlated	CN300	CN400	CN500	CN600	CN800	CN1000	CN1200		

(inch)							
Unplated	CN300	CN400	CN500	CN600	CN800	CN1000	CN1200
Plated	CN300P	CN400P	CN500P	CN600P	CN800P	CN1000P	CN1200P
304 Stainless	CN300S	CN400S	CN500S	CN600S	-	-	-
Polypropylene* 1	CN300PP	CN400PP	-	-	-	-	-
Victaulic Type	CN300V	CN400V	CN500V	CN600V	CN800V	CN1000V	-

*Black Schedule 80

1 This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

INTERLOCKING CLAMPS

2, 4 AND 6 BOLT INTERLOCKING CLAMPS

These clamps are used on any fitting with a collar to engage the forward gripping fingers of the interlocking clamp. However, they are most commonly used on ground joint females and male collared nipples. Smaller sizes provide a safe and economical securing method for universal hose ends. The forward gripping fingers engage the collar preventing the shank or stem from pulling out. Tightening the bolts secures the clamp around the O.D. of the hose.

Instructions for Installing 2, 4 and 6 Bolt Interlocking Clamps

Bolts should be assembled dry.

- Proper clamp part number should be selected from chart to fit the appropriate size of hose and fully assemble onto a squarely cut hose fully inserted with all components in alignment.
- Bolts should be hand tightened until resistance is met as the hose is contacting the clamp halves.
- The bolts should be tightened sequentially one turn at a time in opposing fashion to gradually pull the clamp halves evenly.
- On 6 bolt versions, the tightening should be done in opposing crossing fashion as done on wheels.
- Fully torque the bolts in this manner until the values shown in the chart are achieved.
- Do not exceed the recommended torque.

Hoses will compress (cold flow) over time and periodically the bolts will need to be retorqued for optimum performance of the assembly. It is recommended that this retorquing be done daily for the first week of use, then check monthly as part of maintenance.

Clamps are designed for one-time use.

WARNING! Re-tightening of clamps is necessary before each use. Regular inspection of the assembly is recommended Always refer to manufacturer's recommendations for torque and tightening sequence.

Metal products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

INTERLOCKING CLAMPS

2, 4 AND 6 BOLT INTERLOCKING CLAMPS

Nominal Hose ID in inches		Outside Dia	meter Range					
	From		То		Number of Bolts	Torque Ib _f -ft.	Part Number	Reference Number
	inch	Decimal	inch	Decimal				
3/8	11/16	0.69	3/4	0.75	2	6	2BS038	CD
1/2	15/16	0.94	1-1/16	1.06	2	6	2BC050	B4
1/2	1	1.00	1-1/8	1.13	2	12	2BS050	A4
1/2	1-1/16	1.06	1-3/16	1.19	2	12	2BC051	B5
3/4	1-1/8	1.13	1-5/16	1.31	2	21	2BS075	A9
3/4	1-3/16	1.19	1-5/16	1.31	2	21	2BC075	BU9
3/4	1-5/16	1.31	1-1/2	1.50	2	21	2BC076	B9
3/4	1-1/2	1.50	1-11/16	1.69	2	21	2BC077	B10
1	1-17/32	1.53	1-23/32	1.72	4	21	4BC100	BU14
1	1-13/32	1.41	1-9/16	1.56	4	21	4BC100A	156
1	1-11/16	1.69	1-27/32	1.84	4	21	4BC101	B14
1	1-7/8	1.88	2-1/16	2.06	4	21	4BC102	B15
1-1/4	2-1/16	2.06	2-1/4	2.25	4	40	4BC125	B19
1-1/2	2-3/32	2.09	2-9/32	2.28	4	40	4BC150	BU24
1-1/2	2-1/4	2.25	2-7/16	2.44	4	40	4BC151	B24
1-1/2	2-15/32	2.47	2-23/32	2.72	4	40	4BC152	B25
2	2-1/2	2.50	2-25/32	2.78	4	60	4BC200	BU29
2	2-3/4	2.75	3-1/16	3.06	4	60	4BC201	B29
2	3-3/32	3.09	3-7/16	3.44	4	60	4BC202	B30
2-1/2	3-1/2	3.50	3-15/16	3.94	4	150	4BC250	B34
3	3-13/16	3.81	4-1/16	4.06	4	150	4BC300	B35
3	4-1/16	4.06	4-7/16	4.44	4	200	4BC301	B39
3	4-1/4	4.25	4-13/16	4.81	6	150	6BC400	BS39
4	4-7/8	4.88	5-5/16	5.31	6	200	6BC401	BS49
4	5-1/8	5.13	6-3/16	6.19	6	200	6BC402	BU49

WARNING! Re-tightening of clamps is necessary before each use. Regular inspection of the assembly is recommended. MARNING! Re-tightening of clamps is necessary before each occurrege and tightening sequence.

Metal products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed. TRIAL

DOUBLE BOLT CLAMPS

DOUBLE BOLT HOSE CLAMPS

These clamps provide an efficient means of securing couplings for low pressure discharge or suction service. Double bolt hose clamps are sized for hose OD's from 1-5/8" through 17-1/2". As the bolts are tightened, the double-tongue saddles fill the gap between the bolt lugs preventing pinching of the hose OD. Fully tightened, the double bolt clamps secure the full circumference of the hose. Plated ductile iron.

	Hose O.D. Range		Torque		Torque		
From	То	Part Number	lb _f -ft.	From	То	Part Number	lb _f -ft.
1-5/8	1-15/16	DB049	15	6-15/16	7-5/8	DB769	60
1-7/8	2-3/8	DB060	20	7-11/16	8-3/16	DB818	125
2-3/8	3-1/16	DB076	20	8-1/4	8-7/8	DB875	125
3-1/2	3-11/16	DB094	40	8-15/16	9-7/8	DB988	125
3-1/2	4	DB400	40	9-15/16	11-3/8	DB1125	125
4-1/16	4-7/16	DB463	40	11-3/16	13	DB1275	125
4-3/16	5	DB525	60	12-3/16	14	DB1360	200
5	5-1/2	DB550	60	13-3/16	15	DB1450	200
5-1/2	6-1/16	DB600	60	15-1/16	17-1/2	DB1700	260
6-1/8	6-7/8	DB675	60				

Instructions for Installing Double Bolt Hose Clamps:

Bolts should be assembled dry.

- Proper clamp part number should be selected from chart to fit the appropriate size of hose and fully assemble onto a squarely cut hose fully inserted with all components in alignment.
- Bolts should be hand tightened until resistance is met as the hose is contacting the clamp halves.
- The bolts should be tightened sequentially one turn at a time to gradually pull the clamp halves evenly.
- Fully torque the bolts in this manner until the values shown in the chart are achieved.
- Do not exceed the recommended torque.

Hoses will compress (cold flow) over time and periodically the bolts will need to be retorqued for optimum performance of the assembly. It is recommended that this retorquing be done daily for the first week of use, then check monthly as part of maintenance.

Clamps are designed for one-time use.

WARNING! Re-tightening of clamps is necessary before each use. Regular inspection of the assembly is recommended. Always refer to manufacturer's recommendations for torque and tightening sequence.

Metal products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

SPIRAL DOUBLE BOLT HOSE CLAMPS FOR CORRUGATED HOSE

Clamps (for corrugated hose) manufactured in either clockwise (right hand) or counter clockwise (left hand) design, the spiral double bolt clamp fits between the convolutions on corrugated hose. When fully tightened, the wire secures the full circumference of the outside hose wall - not the convolutions, for a safe, economical and efficient securing method. Consult hose manufacturer for correct convolution direction. Direction of clamp spiral and hose convolution are the same.

Hose I.D. (inch)	Part Number *	Torque Ib _f -ft.	Hose I.D. (inch)	Part Number*	Torque Ib _f -ft.
1-1/2	SDB150	15	5	SDB500	60
2	SDB200	15	6	SDB600	60
2-1/2	SDB250	15	8	SDB800	60
3	SDB300	27	10	SDB1000	60
4	SDB400	27	12	SDB1200	60

*Specify clockwise - cw or counterclockwise - ccw

Instructions for Installing Double Bolt Hose Clamps for Corrugated Hose

Bolt should be assembled dry.

- Proper clamp part number should be selected from chart to fit the appropriate size and corrugation direction of hose.
- Assemble the clamp onto a squarely cut hose fully inserted with all clamp components in alignment.
- Bolts should be hand tightened until resistance is met as the hose is contacting the clamp saddle and inside of bolt arcs.
- The bolt ends/nuts should be tightened sequentially one turn at a time to gradually pull the clamp halves evenly.
- Fully torque the nuts in this manner until the values shown in the chart are achieved. Do not exceed the recommended torque.

Hoses will compress (cold flow) over time and periodically the nuts will need to be retorqued for optimum performance of the assembly.

It is recommended that this retorquing be done daily for the first week of use, then checked monthly as part of maintenance.

Clamps are designed for one-time use.

MARNING! Re-tightening of clamps is necessary before each use. Regular inspection of the assembly is recommended. Always refer to manufacturer's recommendations for torque and tightening sequence.

🔨 Metal products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

NIPPLES & ACCESSORIES

HEX AIR HOSE NIPPLES

For air or many other applications, MS nipples are economical and reusable. The MS nipple accepts bands or clamps. However, each MS is specially designed with a collar behind the hex to engage the gripping fingers of an interlocking clamp. MS threads are NPT. Steel Plated. Use also as companion end of female ground joint.

MS NIPPLE

Hose I.D. (inch)	Thread Size	Part Number ¹
1/4	1/4	MS4-4
1/4	3/8	MS4-6
3/8	1/4	MS6-4
3/8	3/8	MS6-6
3/8	1/2	MS6-8
1/2	1/4	MS8-4
1/2	3/8	MS8-6
1/2	1/2	MS8-8
1/2	3/4	MS8-12
3/4	1/2	MS12-8
3/4	3/4	MS12-12
3/4	1	MS12-16
1	3/4	MS16-12
1	1	MS16-16
1-1/4	1-1/4	MS20-20
1-1/2	1-1/2	MS24-24
2	2	MS32-32
2-1/2	2-1/2	MS40-40
3	3	MS48-48
4	4	MS64-64

TUBE HOSE MENDER

Type SM hose menders repair hose up to and including ID's of 12". After cutting out the damaged hose portion, insert each end of the mender (shanks) into the remaining good ends of the hose. Secure the SM type mender with bands or DB double bolt clamps. Each end will accommodate two or more bands or two clamps for an economical and efficient return to service. Plated Steel.

Hose I.D. (inch)	Part Number
1/2	SM050
3/4	SM075
1	SM100
1-1/4	SM125
1-1/2	SM150
2	SM200
2-1/2	SM250

Part Number
SM300
SM400
SM500
SM600
SM800
SM1000
SM1200

1 This product can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

WWW.JASONINDUSTRIAL.COM

ACCESSORIES

BRASS BALL VALVES

Part Number	Size (inch)	A (mm)	Thread
BV025BF	1/4	6.4	1/4 NPT
BV038BF	3/8	9.9	3/8 NPT
BV050BF	1/2	14.0	1/2 NPT
BV075BF	3/4	19.0	3/4 NPT
BV100BF	1	24.0	1 NPT
BV125BF	1-1/4	31.0	1-1/4 NPT
BV150BF	1-1/2	38.0	1-1/2 NPT
BV200BF	2	49.0	2 NPT
BV250BF	2-1/2	64.0	2-1/2 NPT
BV300BF	3	79.0	3 NPT
BV400BF	4	99.0	4 NPT

FEATURES:

- Sizes to 2" rated 600 WOG,
- Brass ball is chromium plated.
- 2-1/2", 3" and 4" rated 400 WOG
- Ball seat is PTFE
- Temperature Range: Up to 175° F (80° C)
- Not intended for potable water use

MARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.

A Brass products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

ACCESSORIES

MINI BALL VALVES

FEATURES:

- Valve body is plated brass.
- Temperature range up to 150°F (66°C).
- Handles working pressures up to 150 PSI.
- Not intended for potable water use

Size (inch)	Part Number	Port Type
1/8	MBV018BS	Standard
1/4	MBV025BF	Full
3/8	MBV038BF	Full
1/2	MBV050BS	Standard

Female NPT x Female NPT

M WARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.

Brass products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

FOOT VALVES FOR WATER SUCTION HOSE

Foot valves are used on the submersed end of the water suction hose to prevent the pump from losing it's prime when shut down. The foot valve stops the water from draining by a closing leather flapper gate. Each valve has a built in strainer that prevents debris from entering during operation. All sizes have NPS threads and complete valves are painted red.

Size (inch)	Part Number
1-1/2	FV150
2	FV200
2-1/2	FV250
3	FV300
4	FV400
6	FV600
8	FV800

STRAIGHT STREAM BRASS NOZZLES

ACCESSORIES

Made from cast brass with satin finish. Orifice tip sizes are standard. All sizes, for use at 100 PSI, water only at 70° F.

Thread Size (inch)	Туре	Tip Size	Length (inch)	Part Number
3/4	GHT	1/4	6	BN075
3/4	NPSH	1/4	6	BN076
1	NPSH	5/16	8	BN100
1-1/4	NPSH	3/8	9	BN125
1-1/2	NPSH	1/2	10	BN150
1-1/2	NST	1/2	10	BN150NST
2	NPSH	9/16	12	BN200
2-1/2	NPSH	3/4	-	BN250
2-1/2	NST	3/4	-	BN251

MARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.

Ass products can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

COMBINATION PLASTIC OR BRASS FOG NOZZLES

 \wedge

Plastic nozzles are made of high impact bright red plastic with corrosion resistant metal parts. Brass nozzles are high quality heavy brass. These nozzles allow for straight stream or fog spray pattern in industrial, utility or commercial use.

Thread Size (inch)	Туре	Part Number Plastic ²	Part Number Brass ¹
1-1/2	NPS	FN150	FN150B
1-1/2	NST	FN150NST	FN150BNST
2	NPS	-	FN200B
2-1/2	NPS	-	FN250B
2-1/2	NST	-	FN250BNST

Red Nozzles for use at 100 PSI, water only at 70°F Brass Nozzles for use at 100 PSI, water only at 70°F

WARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.

¹This product can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov ²This product can expose you to chemicals including DINP, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

ACCESSORIES

SPANNER WRENCH FOR PIN LUG COUPLINGS

Made from ductile iron with easy grip handle, contour head to fit the coupling curve and special round hole to engage the pinlug.

Size (inch)	Part Number ¹
1-1/2	SW150
2	SW200
2-1/2	SW250
2 X 2-1/2	SW2025
3	SW300
4	SW400

UNIVERSAL SPANNER WRENCH

Ductile iron painted red. Complete with pry bar end and gas cock shut off/on feature. Other end used as pinlug or rocker lug wrenching.

Item	Part Number ¹
Universal Spanner Wrench	US-1

ADJUSTABLE HYDRANT WRENCH

A complete tool for the fire hydrant operation. The pentagonal nut head is adjustable to fit hydrant valves to 1-3/4" for on/off operation. The head also operates pin lug or rocker lug connections from 1-1/2" to 6"

Item	Part Number ¹
Adjustable Hydrant Wrench	HYD-1

Lighter in weight than the HYD-1 with the same adjustable features. Fits 1-3/4" pentagonal nuts. The head will operate hydrant cap and adapter pin or rocker lugs. Handle is plated.

Item	Part Number ¹
Adjustable Hydrant Wrench	HYD-3

∕∕∖

ACCESSORIES

¹This product can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

BOTTOM HOLE

STRAINERS FOR WATER SUCTION HOSE

Used on the submersed end of suction hose to prevent debris from entering the pump during operation. All threads are NPS (trash strainers are square hole).

TOP HOLE

ACCESSORIES

Tube **Bottom Hole** Size Round Hole Square Hole Top Hole Part Number¹ Part Number¹ Part Number¹ Part Number¹ Part Number¹ (inch) 1-1/2 **RHS150 SHS150 TRHS150 THS150 BHS150** 2 **RHS200 SHS200 TRHS200 THS200 BHS200 RHS250** 2-1/2 ----3 **RHS300** SHS300 **TRHS300 THS300 BHS300** 4 **RHS400 SHS400 RHS600 SHS600** 6 _ --8 **RHS800**

HYDRANT ADAPTERS - BRASS

For industrial utility and fire department applications, these adapters allow easy connections from hydrant to smaller size hose. Made of heavy duty cast brass with satin finish, all female ends are supplied with pin lug wrenching. All threads are V cut.

Female Size (inch)	Female Thread	Male Size	Male End Thread	Part Number ¹
1-1/2	NPT	1-1/2	NST	HAB1516
1-1/2	NST	1-1/2	NPT	HAB1615
2	NPT	1-1/2	NST	HAB2016
2-1/2	NST	3/4	GHT	HAB075
2-1/2	NST	3/4	NPSM	HAB076
2-1/2	NST	1	NPSM	HAB100
2-1/2	NST	1-1/2	NPSM	HAB150
2-1/2	NST	1-1/2	NPT	HAB150NPT
2-1/2	NST	1-1/2	NST	HAB150NST
2-1/2	NST	2	NPSM	HAB200
2-1/2	NST	2	NPT	HAB200NPT
2-1/2	NST	2-1/2	NPT	HAB250NPT

Item	Part Number ²
Replacement Gasket	HAG250

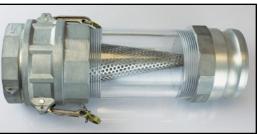
Other thread combinations and particular city/municipal hydrant threads are available in brass with minimal factory order.

WARNING! Brass should never be exposed to use of any materials containing ammonia due to susceptibility of brass for stress corrosion cracking. This attack can cause sudden and catastrophic failure of the assembly leading to property damage, injury, or death.

1 This product can expose you to chemicals including lead, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov ² This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

ACCESSORIES FOR OIL & GAS DRILLING


STRAINERS - SUGAR CONE TYPE

Applications include - water, oil or gas and steam where protection from foreign matter is required in a pipeline. For water, oil and gas applications, the strainer is normally inserted into a sight glass.

FEATURES:

- 304 Stainless Steel
- Permanently attached envelope gasket that makes the assembly with the sight glass and cam & groove fittings much easier.
- Gasket is a nitrile compound.

Typical Use - Part is strainer only.

Part Number ¹	Si	ze
	inch	mm
CS200SS	2.00	50.80
CS300SS	3.00	76.20
CS400SS	4.00	101.60

PUMP PLATE STRAINERS

Pump Plate Strainers are made to thread into Part "A" or Part "D" cam and groove fittings. Threads are NPT. The strainer is used to protect pumps from large contaminants.

FEATURES:

- NPT thread.
- 1/4" holes.
- 0.20" thick.
- Aluminum.
- Easy to assemble with Parts A and D cam and groove couplings.

Part Number	Si	ze
Part Number	inch	mm
25PS150A	1.50	38.10
25PS200A	2.00	50.80
25PS300A	3.00	76.20
25PS400A	4.00	101.60

•

ACCESSORIES

1 This product can expose you to chemicals including carbon black, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

All sizes may not be stocked in all locations. Check with customer service for availability. We disclaim any liability for use of our products in applications other than which they are designed.

ACCESSORIES FOR OIL & GAS DRILLING

SIGHT GLASSES - POLYCARBONATE

Sight Glasses enable the water hauler and pumper to view, at any time, what is streaming through the storage tank drain lines.

Part Number ¹	Nomin	Thread Size	
Part Number	inch	mm	(inch)
SGT200	2	50.8	2-11 ½
SGT300	3	76.2	3-8
SGT400	4	101.6	4-8

FEATURES:

- Temperature range from -76°F to 185°F greater range than the poly-acrylic versions.
- Heavier than Schedule 80.
- Working pressure up to 500 PSI for all sizes.
- NPT pipe threads on both ends.
- Comes with thread protectors on both ends.
- High impact resistant polycarbonate material.
- Excellent UV ray resistance.
- Excellent resistance to most acids, low concentrations of alcohol and alkalis. Compatible with aliphatic hydrocarbons, aromatic hydrocarbons, mild detergents and cleaners, greases and oils & silicone greases and oils.

¹This product can expose you to chemicals including DINP, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

WARNING!

AVOID DIRECT CONTACT WITH STRONG ACIDS OR CHEMICALS

ALWAYS PLACE THE PIPE WRENCH ON THE METAL CONNECTIONS

DO NOT TIGHTEN OR LOOSEN WHILE UNDER PRESSURE

AND NOT THE SIGHT GLASS ITSELF WHEN TIGHTENING.

USE ON DRAIN LINES ONLY. NEVER USE ON FLOW LINES.

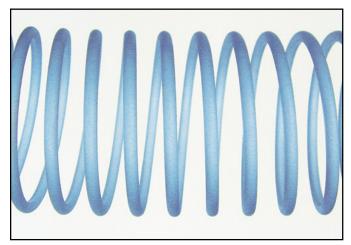
ALWAYS USE AN OILY RAG WHEN CLEANING THIS PRODUCT.

POLYCARBONATE SIGHT GLASS FLANGES

Sight Glass Flanges make it easier to see what is flowing through. Used in petroleum (fracking), water and oil tankers.

Part Number	Size		
Fait Number	inch	mm	
SGF300	3	76.2	
SGF400	4	101.6	

.


ACCESSORIES

ACCESSORIES

3098

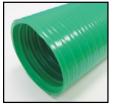
BANDING COILS

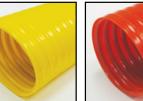
This product can expose you to chemicals including DINP, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

CONSTRUCTION: Clear FDA PVC.

APPLICATION: Clockwise coils allow for a better coupling securing surface on the hose O.D.

FEATURES:


- Made with clear FDA PVC, 3098 can be used on any thermoplastic cover compound.
- Fits high profile clockwise O.D. corrugations for a smooth coupling securing surface.
- Fits low profile clockwise O.D. corrugations for a slightly raised coupling securing surface.
- Cut one length in half to accomodate both ends of one hose assembly.


Part	Fits Ho	se I.D.	Coil Length	
Number	inch	mm	inch	mm
3098-0150	1-1/2	38.1	6	152.4
3098-0200	2	50.8	7	177.8
3098-0250	2-1/2	63.5	8	203.2
3098-0300	3	76.2	8	203.2
3098-0400	4	101.6	9	228.6
3098-0500	5	127.0	10	254.0
3098-0600	6	152.4	14	355.6

3099

Cut to 12" sleeves for each end of the assembly.

This product can expose you to chemicals including DINP, which is known to the State of California to cause cancer, birth defects or other reproductive harm. For more information visit www.P65WARNINGS.ca.gov

BANDING SLEEVES

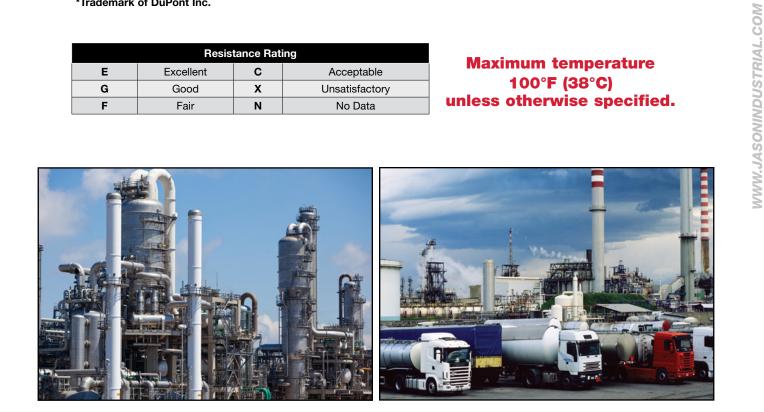
CONSTRUCTION: Green, yellow or orange PVC.

APPLICATION: Banding sleeves are made to thread over the outside of Jason thermoplastic petroleum hoses to allow better coupling securing surface on the O.D. of the hose.

FEATURES:

- Color-coded to fit specific Jason petroleum hoses
- Clockwise threading
- All sleeve lengths are 3 ft.

Part	Fits Hose I.D.		Use on	Sleeve
Number	inch	mm	Hose Series	Color
3099-03-3040	3	76.2	3040	Green
3099-04-3040	4	101.6	3040	Green
3099-03-3045	3	76.2	3045	Green
3099-04-3045	4	101.6	3045	Green
3099-02-3050	2	50.8	3050	Yellow
3099-03-3050	3	76.2	3050	Yellow
3099-04-3050	4	101.6	3050	Yellow
3099-03-3053	3	76.2	3053	Yellow
3099-04-3053	4	101.6	3053	Yellow
3099-02-3058	2	50.8	3058	Orange
3099-03-3058	3	76.2	3058	Orange
3099-04-3058	4	101.6	3058	Orange


WARNING: The following data has been compiled from generally available sources and should not be relied upon without consulting and following the hose manufacturer's specific chemical recommendations. Neglecting to do so might result in failure of the hose to fulfill it's intended purpose, and may result in possible damage to property and serious bodily injury.

		Elastomer / Pl	astics
NR	Natural Rubber	EPDM	Ethylene-propylene-diene-monomer
IR	Isoprene (synthetic)	FKM	Fluorocarbon rubber (Viton®*)
SBR	Styrene-butadiene	UHMW	Ultra High Molecular Weight Polyethylene
CR	Chloroprene (Neoprene®*)	XLPE	Cross-Linked polyethylene
NBR	Nitrile-butadiene (Buna-N)	CSM	Chloro-sulfonyl-polyethylene (Hypalon®*)
IIR	Isobutene-isoprene (Butyl)		

*Trademark of DuPont Inc.

	Resis	tance Rat	ing
E	Excellent	С	Acceptable
G	Good	Х	Unsatisfactory
F	Fair	N	No Data

Maximum temperature 100°F (38°C) unless otherwise specified.

155

U н М х L w Р Р Е Е Е Е Ν Ν Е Е Ν G Ν Ν Е Е G Е Е Е Е Е Е Е Е Е Е Е Ν Ν G G Е Е Е Е Ν Ν Е Х х Е Е Е Е Е Е G G Е Е Е Е Е Е Е Е Е Е Е Е Е Е G G Х х Е Е Е Е Е Е Е Е Ν Е Е Е Е Е Е Е Е Е Е G Е Ν G G Е Ν Е Е G х

100
\geq
<u> </u>
- in
2
2
C.
5
V
0
\leq
and the second s
0
<u> </u>
C
S S
<u> </u>
1
-
-
0
0
>
5

									U								
							_		н								_
		_					Е	X	м								E
		S		N	1	С	P	L	w			S	-	N	1	c	P
	N	В	c	В	1	s 	D	P _	Р -		N	В	c	В	1	s 	D
	R	R	R	R	R	M	M	E	E	Aluminum Dhaamhata	R	R	R	R	R	M	M
Absorpton Oil	X	X	G	E	X	G	X	G	G	Aluminum Phosphate	E	E	E	E	E	E	E
Acetal	C	C	C	X	G	С	С	G	G	Aluminum Salts	E	E	E	E	E	E	E
Acetaldehyde	C	X	F	X	E	C	G	E	G	Aluminum Sulfate	G	E	E	E	E	E	E
Acetamide	C	C V	G	G	E C	G	E C	E	E	Aminobenzene	N	N	N N	N	N	N	N
Acetate Solvents	C V	×	X G	X X	G	X G	G	E	G	Aminodimethylbenzene	N	N		N	N E	N G	N
Acetic Acid 10%	X	X X	C	G	G	G	G	E	E	Aminoethanol	G	N	N N	G N	E	N	N G
Acetic Acid 30%	×		c	C	G		G	E	G	Aminoethylethanolamine	N E	N C	E	G	E	G	E
Acetic Acid 50% Acetic Acid, Glacial	X	X	c		G	X X	X	G	G	Ammonia, Anhydrous	X		E N		E	E	E
	×	X		X	G	x	Ē	E	E	Ammonia Cupric Sulfate	G	N G	E	E E	E	E	E
Acetic Aldehyde	X	N	N	N	E	G	E	E	G	Ammonia, Liquid	G	G	G		G	G	E
Acetic Anhydride	×	×	G	×	G		G	E	E	Ammonia, in Water	E		G	G E	E	E	E
Acetic Ester (Ethyl Acetate) Acetic Ether (Ethyl Acetate)	X	X	X X	× ×	G	X C	G	E	E	Ammonium Acetate Ammonium Bicarbonate	E	E N	N	N	N	N	
	×	×			C				E								N G
Acetic Oxide (Acetic Anhydride) Acetone	X	X C	X F	× ×	E	G F	G E	E	E	Ammonium Bisulfate (50%) Ammonium Carbonate	N E	N E	N E	N C	G E	N E	E
	с х	x	N	N	G	N	G	E	G	Ammonium Chloride	E	E	E	E	E	E	E
Acetone Cyanohydrin	c	x	X	X	E	X	E	G	G	Ammonium Flouride	E	N	N	N	N	N	N
Acetophenone Acetyl Acetone	x	×	×	×	G	x	E	E	E	Ammonium Hydroxide	G	G	E	G	E	G	E
Acetyl Chloride	x	x	x	x	C	x	C	G	G		E	E	E	E	E	E	E
					E			E		Ammonium Metaphosphate			E	E	E		E
Acetyl Oxide Acetyl-P-Toluidine	X	N	N	X	×	G	E	E	G E	Ammonium Nitrate	G	E	E	E	E	E	E
	X E	X E	N G	N E	Ē	N E	X E	E	E	Ammonium Nitrite Ammonium Persulfate	E	E X	E	×	E	E E	G
Acetylene Acetylene Dichloride (Dichlorethylene)	X	X	N	N	X	N	X	X	X	Ammonium Phosphate	E	Ē	E	Ē	E	E	E
Acetylene Tetrachloride	x	x	N	N	x	N	x	×	x	Ammonium Sulfate	E	E	E	E	E	E	E
Acrolein (hydroquinine inhibited)	N	N	N	N	G	N	x	E	E	Ammonium Sulfide	E	E	E	E	E	E	E
Acrylamide	N	N	N	x	N	N	x	E	E	Ammonium Sulfite	E	E	E	E	E	E	E
Acrylates (HEA or HPA)	N	N	N	N	N	N	x	E	E	Ammonium Thiocyanate	E	E	E	E	E	E	E
Acrylic Acid	N	N	N	N	N	N	N	N	G	Ammonium Thiosulfate	E	E	E	E	E	E	E
Acrylonitrile	G	x	x	x	x	X	x	G	G	Amyl Acetate	C	X	X	X	G	X	G
Adipic Acid	N	G	G	G	E	E	G	N	N	Amyl Acetone	x	x	x	x	G	x	G
Aeroshell 7A. 17 Grease	N	N	G	E	N	N	N	N	N	Amyl Alcohol	E	E	E	E	E	E	E
Air	E	E	E	E	Е	Е	Е	E	Е	Amylamine	C	G	X	С	G	C	X
Air, 300° F	X	X	X	X	N	X	X	N	N	Amylbenzene	x	x	G	G	x	N	x
Aircraft Hydraulic Oil AA	N	N	N	E	x	N	x	E	N	Amyl Borate	x	x	c	E	E	С	x
Alachlor (Lasso)	E	N	N	N	N	N	N	E	N	Amyl Chloride	x	X	X	x	x	X	x
Alcohols, Aliphatic	Е	G	E	Е	Е	Е	Е	E	Е	Amyl Chloronapthalene	x	x	x	G	x	x	x
Alcohols, Aromatic	С	x	С	С	x	x	x	E	E	Amyl Napthalene	x	x	х	х	х	x	х
Alkaline Liquid (NOS)	N	N	N	N	E	E	N	Е	N	Amyl Oleate	х	х	х	х	G	х	G
Alk-Tri (Trichloroethylene)	х	N	N	х	x	x	N	E	N	Amyl Phenol	x	х	х	х	х	х	х
Alkyaryl Polyether Alcohol	N	N	N	N	N	N	N	N	Е	Amyl Phthalate	х	N	N	х	E	х	N
Alkyaryl Sulfonate Alkybenzene Sulfonate	E	N	N	E	N	х	N	E	E	Anethole	x	х	х	х	х	x	х
Allyll Alcohol	Е	G	Е	Е	Е	Е	Е	Е	Е	Anhydrous Ammonia	х	х	х	х	х	х	х
Allyl Bromide	х	х	х	х	х	х	х	G	G	Aniline	x	х	х	х	Е	х	С
Allyl Chloride	х	х	х	х	х	х	х	G	G	Aniline Dyes	С	С	с	С	G	С	G
Alpha Methylstyrene	х	х	х	х	х	Ν	х	G	G	Aniline Hydrochloride	Е	С	Х	С	С	Х	G
Alpha Olefin Sulfonate	E	N	N	N	N	N	N	N	N	Animal Fats	x	x	G	E	G	F	С
Alum (Ammonium Potassium Sulfate)	Е	Е	Е	Е	Е	Е	Е	Е	Е	Animal Gelatin	N	N	Е	Е	Ν	N	N
Aluminum	Е	Е	Е	Е	Е	Е	Е	Е	Е	Animal Grease	х	х	G	G	С	С	G
Aluminum Acetate	Е	Е	N	N	Ν	Ν	Ν	N	N	Animal Oils	x	х	х	Е	G	х	С
Aluminum Alkyl	x	x	х	x	х	х	х	х	x	Ansul Ether	х	х	х	С	С	х	С
Aluminum Bromide	Е	Е	Е	Е	Е	Е	Е	Е	N	Antifreeze (Ethylene Glycol)	Е	Е	Е	E	Е	Е	Е
Aluminum Chloride	E	E	E	E	E	E	E	E	Е	Antimony Trichloride	x	x	G	G	E	G	G
Aluminum Chlorohydrate Solution (to 50%)	N	N	N	E	E	N	E	E	E	Ant Oil (Furfural)	X	X	G	X	х	G	X
Aluminum Flouride	E	Е	E	E	E	Е	E	E	E	Antimony Pentachloride	x	x	x	x	С	x	С
Aluminum Formate	x	N	N	x	G	x	N	Е	E	Antimony Salts	N	N	N	G	E	N	E
Aluminum Hydroxide	E	E	E	E	E	G	E	Е	Е	Aqua Ammonia	G	G	G	G	G	E	Е
Aluminum Nitrate	E	E	E	E	E	E	E	E	E	Aqua Regia	x	x	X	x	x	С	С
	·		. <u> </u>	· _	, <u> </u>	, <u> </u>	<u> </u>	<u> </u>	·		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>

156

	N	S B R	CR	N B R	I I R	C S M	E P D M	X L P E	U H W P E	
Argon	X	X	X	С	G	X	E	N	N	Bromine
Arguad	Е	Е	Е	Е	Е	Е	Е	Е	Е	Bromine Water
Aromatic Hydrocarbons	х	х	х	С	х	х	х	Е	Е	Bromobenzene
Aromatic Tar	х	N	N	х	х	х	х	Е	Е	Bromochloroethane
Arsenic Acid	E	Е	Е	E	E	E	E	E	E	Bromochloromethane
Arsenic Chloride	x	x	Е	С	x	x	G	x	×	Bromotoluene
Arsenic Trichloride	x	х	Е	С	х	х	G	х	x	Bubble Bath Compounds
Asphalt	x	X	G	E	х	х	G	G	G	Bunker Oil
ASTM Fuel A	x	x	E	Е	х	G	х	N	N	Butadiene
ASTM Fuel B	х	x	x	Е	х	х	х	N	N	Butandiol (Butylene Glycol)
ASTM Fuel C	x	х	x	G	х	х	х	N	N	Butane
ASTM Oil No. 1	x	X	E	E	X	G	X	Е	Е	Butanoic Acid
ASTM Oil No. 2	x	x	G	E	x	F	x	E	E	Butanol
ASTM Oil No. 3	X	x	G	E	x	F	X	E	E	Butraldehyde (Butanal)
ASTM OILNO. 4	x	x	x	G	x	x	x	N	N	Butter (Non FDA)
Automatic Trans. Fluid	×	×	G	E	x	c	x	N	N	Butyl Acetate
Aviation Gasoline	x	x	c	E	x	x	x	E	E	Butyl Acetoacetate
Baltic Types 100, 150, 200, 300, 500	N	N	N	E	x	N	x	E	N	Butyl Acrylate
Bardol B	X	X	X	X	x	X	x	E	N	Butyl Alcohol
Barium Carbonate		Ē	Ē	Ē	Ē	Ē	Ē	E		-
	E			E	E	E	E	E	E	Butyl Aldehyde
Barium Chloride	E	E	E	E	E	E	E	E	E	Butylamine
Barium Hydroxide	E	E	E	E	E	E	E	E	E	Butyl Benzene
Barium Sulfate	E									Butyl Benzyl Phthalate (BBP)
Barium Sulfide	E	E	E	E	E	E	E	E	E	Butyl Bromide
BBP (Butyl Benzyl Phthalate)	X	N	N	Х	E	X	N	N	N	Butyl Butyrate
Beer	E	E	G	С	E	E	G	N	N	Butyl Carbitol
Beet Sugar Liquors	E	E	E	E	E	E	E	E	E	Butyl Cellosolve
Bellows 80-20 Hydraulic Oil	N	N	N	E	Х	N	Х	E	N	Butyl Chloride
Benzaldehyde	х	N	N	Х	G	Х	G	E	E	Butylate
Benzal Chloride	N	N	N	Х	G	N	N	E	E	Butylene
Benzene (Benzol)	х	х	х	Х	х	Х	Х	E	G	Butyl Ether
Benzene Sulfonic Acid	Х	х	х	N	G	G	Ν	Е	Е	Butyl Ethyl Acetaldehyde
Benzidine	E	х	х	G	х	Ν	х	G	Ν	Butyl Ethyl Ether
Benzine	х	х	G	E	Х	х	Х	E	Е	Butyl Formate
Benzene Solvent (Ligroin)	х	N	N	Е	х	х	х	Е	E	Butyl Mercaptan (2-Methyl - 2 Butanathi
Benzoic Acid	G	х	E	х	E	G	G	Е	Е	Butyl Oleate
Benzoic Aldehyde	х	х	х	х	Х	х	х	E	E	Butyl "Oxiol" tm for EG Monobutyl Ether
Benzophenone	E	N	N	N	Ν	Ν	Ν	Е	Ν	Butyl Phthalate
Benzotrichloride	х	х	х	х	х	х	х	G	G	Butyl Stearate
Benzoyl Chloride	х	х	х	х	Х	х	х	G	G	Butylene Glycol
Benzyl Acetate	х	х	х	х	G	G	G	Е	Е	Butyraldehyde
Benzyl Alcohol	G	G	С	х	G	F	G	E	E	Butyric Acid
Benzyl Benzoate	Ν	N	N	N	G	Ν	G	Е	Ν	Butyric Anhydride
Benzyl Chloride	х	х	х	х	С	х	х	Е	Е	Cadmium Acetate
Bichromate of Soda	х	х	G	х	Е	G	С	Е	Е	Calcine Liquor (Radioactive Waste)
(Sodium Dichromate)										Calcium Acetate
Bismuth Carbonate	Е	Ν	Х	Ν	Ν	Ν	Ν	Ν	Ν	Calcium Aluminate
Bisphenol A	Е	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Calcium Aresenate
Bitumastic	х	х	G	G	Х	Х	Х	Ν	х	Calcium Bisulfate
Black Sulfate Liquor	G	G	Е	G	Е	G	Е	Е	Е	Calcium Bisulfide
Blast Furnace Gas	х	х	G	С	С	G	С	Е	Е	Calcium Bisufite
Bleach	х	х	С	х	х	F	G	Е	Е	Calcium Bromide Solution
Borax Solution	G	G	Е	С	Е	Е	Е	Е	Е	Calcium Bichromate
Bordeaux Mixture	G	G	Е	Е	Е	Е	Е	Е	Е	Calcium Carbonate
Boric Acid	Е	Е	Е	Е	Е	Е	Е	Е	Е	Calcium Chlorate
Brake Fluid (HD-557)	Ν	Е	G	С	G	G	Е	Ν	Ν	Calcium Chloride
Brine	Е	Е	Е	Е	Е	Е	Е	Е	Е	Calcium Hydroxide

υ н М

Е х

s D Р Ρ

Х Х х х

I R М М Е Е

L w

Е

Ν Ν

Е

Ν Ν

G

G G

Е Е

Ν

С G

Х G

Е Е

С

Е Ν Е

С

Е Е

С Е

G Е

Ν Ν

Е

Е Е Е

С Е

Ν G F

Е Е Е Е

Е G Е

Е Ν

Х Ν Е Е

С С Е Ν

G

G

Е

Е

G

Е

Ν

Е

Е

Ν

Е

Ν

s

в С в

Ν

R R R R

х Х Х х Х С х Х х

х Х G С С Е С Е Е

х х х х Х х Х С С Х

Х Х Ν Ν Х Х Х Х

х х х

Х Х Ν Ν Х Ν Х Ν Ν

Ν Ν Ν Ν Ν Ν Ν Ν Е

Х Х G Е х Х Х Е Е

х Х F Х х С Х F F

Ν Ν Ν Ν Ν Ν Ν Е G

Х

Ν

Е Е Е Е Е Е Е Е Е

х х х Х Х Х Х G Ν

С С G

Х

Х Ν Ν

Х Х

Е Е Е Е Е Е Е Е Е

Х

G С

Х Х Х Х х Х Х Е Е

х Ν Ν

Х Х

х Х х Х С х G G G

х Х

Х

Ν Ν Ν

Х х G G С G С Е Е

х х G G С G С Е Е

Х Х Х Х С Х Х Е Е

х

Х Ν Х Х Ν Ν Ν Ν Ν

х Х Ν Х Х Ν Х Е Ν

Х Х Х Х G Х G Е Е

Ν Ν Ν

Х Х Х Х С Х С Е Е

Х

Х Ν Ν х G Х х Е Е

G G

С х х С С G С Е Е

Х

Ν

С Х Х Х Е Х Е Е Е

Е Ν Е Е Е Е Ν Ν Ν

Е Е Е

С

Ν Ν Ν Ν Ν Ν Ν Е Е

Ν

Е

G

Е Е Е Е Е Е Е Е Е

Е G Е Е Е G Е Е Е

Х Е

Ν

х

Ν

х х

х

х

х

Ν Ν

> Ν Ν

Ν

Ν Ν

G G

Е

Ν

Е

G Е

Ν Ν Ν Ν

Х Х G Х

Х Х Х Х

Ν Х х Х Х

Х С С

Х Х Х Х Х

G G Е Е Е Е Е

G G Е G

Х Х С Х

х х С G

х G С х

Ν Ν Ν Ν Ν Е G

Х Ν G Х

Ν Е Е Ν

Ν Ν Ν N N Е Ν

Е Е Е Е Ν Е Ν

Е Е G Е

Ν Ν Е F

Е Е Е

Ν T С

Х Х

Е Е G Х

Е

Х Х

Х

Ν Ν Ν

Ν Ν Ν

Х

Е Е Е

Е G

G

Ν

Е Е G Е Е

Е х Ν

U

н

υ

н М

G Ν Ν

Е х ı. w Р

D Е Е

х G G

С G G

х G G

х х G G G Е

Ν Ν Ν

х Ν Ν

Е Ν Ν

Е Е Е

х Е Е

х Ν Ν

х Е Е

Е С Е Е Е Е

Е Е Е

х Е Е Е Е Е

Е Е Е

Е Е Е

Ν Е Е Е Е Е

Е Е Е

Е Е Е

Е С Е Е

С С G Е Е

х Е Е

Х Е Е

х Е Е

Х х Е Е Е Е

С Е Е Е

х G Ν

Ν х Ν Ν Е Е

Ν Е Е

Е G Е Ν Ν Ν

Ν Е Е

Е Е Е

Е Е Е Е

Е Е

Е Ν

Е Е

Е Е

Е Ν

Е

G

G G

Е Е

G G

Е Е Е Ν

Е Е

Е Е

ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER
-
100
_
-
-
100
1
- C
6
S -
0
_
the second se
~
and the second se
and the second se
_
<u> </u>
_
6
0
the second se
100 C
- 1.4
_
1 I
_
0
0
\frown
\smile
2

N N										н								
N N </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>х</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									х									
N N </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th>						-												
Galari Maganzia G						-												
Cacum Monome X <thx< th=""> X <thx< th=""> <thx< th=""><th></th><th>1</th><th>1</th><th>1</th><th></th><th></th><th></th><th></th><th>1</th><th>1</th><th>ī</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thx<></thx<></thx<>		1	1	1					1	1	ī							
Cache National (C) C <thc< th=""> C <thc< th=""></thc<></thc<>													 					
Cachenyman F C <thc< th=""> C C C <thc<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<<></thc<>																		
Carub Stands E O N																		
Cacume Standard E N																		
Cachersbarding E Comportand Marchine																		
Caches Caches C <thc< th=""> C C <thc<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<<></thc<>																		
Calcum Suffan E E E E E E E E E E E E C Contrologies C X <thx< th=""> X <thx< th=""> <thx< th=""> <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></thx<></thx<></thx<>																		
Calue siguar E E E E E E E E C Concor Concor C C C C C C C C C C C C C Concor C C <thc< th=""> <thc< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<></thc<>																		
Catche Quar E C Controm And E E E E E E E <td></td>																		
Caracteristic N																		
Camber Chapid abore 119* F) N		E	E	G	C	E	E	E	E	E								
Care Support Labors (Non F.D.A) E E F </td <td></td>																		
Caponsodi N												-						
Carponectam E N													 					
Carlynic Acid X N X												0						
Cardomates X																		
Carinol X Carbon Loadin X <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																		
Cartoliol Acel (rhenor) X																		
Carbonic Acid (Phenol) X G E <																		
Carbon Biautifie N																		
(see Carbon Disulficie)vv<	. ,																	
Carbon Dioxide E E E E E E E E E E E E E C Cohore Order E E E E E C Cohore Arsenta E C Cohore Choride E E E E E E E E C Cohore Choride E Cohore Choride E E E E E Cohore Choride E <td></td> <td>N</td> <td>N</td> <td>N</td> <td>N</td> <td>N</td> <td>N</td> <td>N</td> <td>N</td> <td>N</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		N	N	N	N	N	N	N	N	N								
Carbon Disulifié X <		_	_	_	_	_	_	_	_	_								
Carbonic Acid E																		
Carbon Monoxide E <td></td>																		
Carbon Tetrachloride X <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																		
Carbon Tetrafluoride X																		
Carbony Chloride X Copper Nutritie E E E E E E E E Copper Sulphate C <thc< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<>																		
Casein N N N E N Copper Sulphate F E																		
Castor Oil C X G E G C G E F E F E E E E E F E E E E E E E E Copper Sulphide C E E E E F E E E E C Copper Sulphide C E E E C Correstruction C C G G G G G C <																		
Causic Potash F <																		
(Potassium Hydroxide) E G G G F F F F F G																		
Caustic Soda E G G G N N N V E F F Corn Syrup G <td></td> <td>E</td> <td>G</td> <td>G</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		E	G	G	E	E	E	E	E	E								
(Sodium Hydroxide) I <thi< th=""> I <thi< th=""></thi<></thi<>		_	~	~	~	_	~	_	_	_								
Celosize X N N X E E E E E E Celosols X N N X E X Celosive X X X C X G G G G G G G G G G G Celosote X <		E	G	G	G	E	G	E	E	E								
Cellsolve X X E G G G G G F E F Cellsolve X		×	N	N	v	E	E	_	_	_								
Cellulose Acetate C X K G X G G G G G G G G C X X C G X X C G X X C G X X C G X X C G X X C G X X C G X X C G X																		
CellulubeCXXX<																		
Cement, PortlandNNN <td></td>																		
China Wood Oil (Tung Oil)XXXXKKXX																		
ChlordaneNNXXXNXXENCrotonaldehydeXXXNEXNNChlorinated NapthaleneXXX <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																		
Choinated NapthaleneXXXXXXXXXNNNNCotonic AcidXXNNGENGChoinated SolventsXXXNNXXX <td></td>																		
Choinated SolventsXXX </td <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												,						
Choine DioxideXXX<																		
Choine Gas (Dny)CCC <td></td>																		
Chlorine TrifluorideNNNNNNNNNNNNNCurreneXXXXCCCXXXXCCXXX <td></td>																		
Choine, Water Solutions (2%)CXXXXCGCEECupric ArsenateGGNNNNNGNChoroacetic AcidGGXXXXCCEECupric CarbonateCCGGGEEEChoroacetoneXXXXXGGXXEECupric ChoroideGG												-						
Chloroacetic AcidGXX <td></td>																		
ChloroacetoneXXXXXXXXXXEECupric ChlorideCCCGGEEEChlorobenzoneXXXXXXXGGCCupric CyanideGGG																		
ChlorobenzeneXXXXXXXXXXGGCupric CyanideGGG <td></td>																		
Chlorobenzol X N N X X X X X E E C Cupric Hydroxide N																		
Chloroburomomethane X X X X X X X X X G X Cupric Nitrate C C G G E																		
Chlorobutane X X X X X X X X G G G Cupric Nitrite C C G G E<																		
ChlorobutadieneXXXXXXXXGGGFEGEEEEEChlorobutadieneXXXXXXXGGEE </td <td></td>																		
Chloroethylbenzene X X X X X X E																		
												- prio Ganato	-	5	-	-	-	-
											L	.	-					

υ

							Е	х	н м	
		s		N	Т	с	P	Ĺ	w	
	N	в	с	в	i	s	D	P	P	
	R	R	R	R	R	м	м	E	E	
Cutting Oil	X	X	G	E	X	X	X	G	N	Dichloro
Cutting Oil (Sulfur Base)	N	N	х	Е	N	N	N	N	N	Dichloro
Cutting Oil (Water Solutions)	Ν	N	х	Е	N	N	N	N	N	Dichloro
Cyanisde, Copper	G	G	G	G	G	G	G	Е	N	Dichloro
Cyanide Mercuric	G	G	Е	G	G	Е	G	Е	N	Dichloro
Cyanide, Silver	N	N	Е	N	N	N	N	Е	N	Dicycloh
Cyanide, Sodium	Е	Е	Е	Е	Е	Е	Е	Е	Ν	DIDA (D
Cyclohexane	х	x	x	G	х	х	х	Е	Е	Dieldrin
Cyclohexanol	х	х	G	С	х	х	х	Е	Е	Dieidrin i
Cyclohexanone	х	х	х	x	x	x	x	Е	Е	And V
Cyclohexlamine	Ν	х	N	Ν	Е	Ν	Е	Ν	Ν	Diesel F
Cyclopentane	х	х	G	G	х	х	х	Е	Е	Diesel O
Cyclopentanol	х	х	Ν	Ν	х	х	Ν	Е	Е	Diethand
Cyclopentanone	х	N	N	х	х	х	N	N	N	Diethyl E
P-Cymene	х	х	х	С	х	х	х	Е	Е	Diethyl C
DDT in Kerosene	Х	х	G	Е	F	х	х	Е	Е	Diethyl E
Decaline	х	х	х	х	х	х	х	Е	Е	Diethyl K
Decanal	х	N	N	х	х	х	N	Ν	Ν	Diethylpl
Decanol	х	Ν	х	Е	х	G	Ν	Ν	Ν	Diethyl C
Decane	х	х	х	G	х	х	х	Е	Е	Diethyl S
Decyl Alcohol	х	N	N	Е	Е	Е	Е	Е	Е	Diethyl S
Decyl Aldehyde	х	N	N	х	х	х	N	N	N	Diethyl S
Decyl Butyl Phthalate	х	N	N	х	Е	х	Ν	Е	Е	Diethyl T
Deicing Fluid	Ν	N	Е	Е	Е	G	Е	Е	Е	Diethylad
Denatured Alcohol	E	E	E	E	E	E	E	E	E	Diethylar
Detergent, Water Solutions	G	G	G	E	G	G	E	E	E	Diethyler
Developing Fluid (plctures)	E	G	E	Е	E	E	G	N	N	Diethyler
Dextrin	Ν	N	E	E	х	N	Х	х	N	Diethyler
Dextron	Ν	N	N	Е	х	N	х	х	N	Diethyler
DHSO Butylene	х	Х	Х	G	Х	Х	Х	E	N	Diethylen
Diacetone Alcohol	x	X	G	X	E	G	G	E	E	Diethyler
Diammonium Phosphate	N	N	N	N	N	N	N	N	N	Dihydrox
Diamylamine	G	C	EN	G N	E	C	C	E	EN	Dihydrox
Diamyl Naphthalene	X	X N	N	X	X	X	N	E	E	Dihydrox
Diamyl Phenol	x	N	N	×	×	××	X N	E	E	Dihydrox
Diamylene Diazonin	Ē	E	N	N	N	N	E	N	N	Diisobuty
Dibenzyl Ether	X	X	X	X	G	X	X	E	E	Diisobut
Dibenzyl Sebacate	c	x	x	x	G	x	G	E	E	Diisocya
Dibromobenzene	x	x	x	X	x	x	x	G	G	Diisoctyl
Dibromomethane	x	x	x	x	x	x	x	G	G	Diisoctyl
Dibutyl Ether	x	x	x	x	x	x	c	E	E	Diisodec
Dibutylamine	G	F	G	E	F	F	G	E	E	Diisodec
Dybutylphthalate	x	x	х	x	G	x	E	E	E	Diisoocty
Dibutyl Sebacate	x	х	х	х	G	x	G	G	G	Diisoocty
Dicalcium Phophate	Е	Е	Е	Е	Е	Е	Е	Е	Е	Diisopro
Dicamba	N	N	N	N	N	N	Е	Е	Е	Diisopro
Dichloroacetic Acid	x	N	N	x	x	х	x	Е	Е	Diisopro
Dichloroaniline	Ν	х	х	х	х	N	х	N	N	Diisopro
Dichlorobenzene	x	х	х	х	х	х	х	G	G	Diisopro
Dichlorobenzyl	х	х	х	х	х	х	х	G	N	Dilauryl I
Dichlorobutane	x	х	х	х	х	х	х	Е	Е	Dimethyl
Dichlorodifluorometh	х	х	Е	G	х	х	х	Е	Е	Dimethyl
Dichloroethane	x	х	х	х	С	х	х	Е	С	Dimethyl
Dichloroethyl Ether	х	х	х	х	х	х	х	Е	Е	Dimethyl
Dichloroethylene	x	х	х	х	С	х	х	Е	х	Dimethyl
Dichlorohexane	х	х	х	х	х	х	х	Е	Е	Dimethyl

									U H
							Е	x	м
		S		Ν	I	С	Р	L	w
	N R	B R	C R	B R	I R	S M	D M	P E	P E
Dichloroisopropyl Ether	X	X	X	X	X	X	X	E	E
Dichloromethane	х	х	x	x	x	х	х	Е	Е
Dichloropentane	х	x	x	x	x	х	x	Е	Е
Dichloropropane	х	х	N	N	х	х	N	Е	Е
Dichlorotoluene	N	N	N	N	N	N	N	N	N
Dicyclohexylamine	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
DIDA (Diisodecyl Adipate)	х	N	N	x	Е	х	N	N	N
Dieldrin Xylene	х	х	х	х	х	х	х	Е	Е
Dieidrin in Xylene	х	х	G	G	х	х	х	Е	Е
And Water Spray									
Diesel Fuel	х	х	G	Е	х	х	х	Е	Е
Diesel Oil	х	х	G	E	х	С	х	Е	Е
Diethanol Amine	G	G	G	G	Е	F	F	Е	Е
Diethyl Benzene	Х	Х	х	х	х	Х	Х	Е	E
Diethyl Carbonal	E	Ν	Ν	E	Е	Е	Ν	Е	Е
Diethyl Ether	х	Х	С	G	Х	Х	Х	Е	Е
Diethyl Ketone	F	х	N	N	G	х	N	E	E
Diethylphthalate	х	х	х	х	E	х	G	E	E
Diethyl Oxalate	С	х	х	х	С	х	Е	Е	E
Diethyl Sebacate	х	Х	X	х	E	Х	С	E	E
Diethyl Sulfate	х	х	х	х	G	х	G	E	E
Diethyl Sulfide	N	N	Ν	Ν	N	N	Ν	E	N
Diethyl Triamine	G	С	G	G	E	С	G	E	E
Diethylacetaldehyde	N	N	N	N	N	N	N	E	N
Diethylamine	N	N	N	N	N	N	N	N E	G N
Diethylene Dioxide Diethylene Glycol	X E	X E	X E	X E	G E	X E	G E	E	E
Diethylene Glycol Methyl Ether						N	E	E	
Diethylene Glycol Monobutyl Ether	N	N	N	N	N	N	E	E	N
Diethylene Glycol Monobutyl Ether Acetate	N	N	N	N	N	N	E	E	N
Diethylenetriamine	G	G	C	G	E	C	E	E	E
Dihydroxyacetone	N	N	N	N	N	N	E	E	N
Dihydroxydiethyl Ether	E	E	E	E	E	N	E	E	E
Dihydroxyethyl Amine	G	С	G	G	E	С	G	E	E
Dihydroxyethyl Ether	E	E	G	E	E	E	G	Е	E
Diisobutylene	x	x	G	Е	x	x	x	Е	E
Diisobutyl Ketone	х	х	х	x	G	х	G	Е	Е
Diisobutyl Phenol	Е	N	N	N	N	N	N	N	N
Diisocyanate	х	х	х	х	х	х	х	х	х
Diisoctyl Phthalate	x	N	N	x	Е	х	Е	N	Ν
Diisoctyl Adipate	х	N	N	х	Е	х	N	Е	Е
Diisodecyl Adipate	х	x	Е	x	x	С	Е	Е	Е
Diisodecyl Phthalate	х	х	х	х	Е	С	Е	Е	Е
Diisooctyl Adipate	х	х	х	х	Е	х	Е	Е	Е
Diisooctyl Phthalate	х	х	х	х	Е	С	Е	Е	Е
Diisopropanolamine	G	N	N	G	Е	Ν	N	N	N
Diisopropyl Benzene	х	х	х	С	х	х	х	Е	Е
Diisopropyl Ether	х	х	х	G	х	х	х	Е	Е
Diisopropyl Ketone	х	х	х	х	Е	х	Е	Е	Е
Diisopropylidene Acetone	х	Х	х	х	G	Х	G	Е	Ν
Dilauryl Ether	х	х	х	С	х	С	х	Е	Е
Dimethyl Aniline	х	Х	х	х	G	х	х	Е	Ν
Dimethyl Benzene	х	Ν	Ν	х	х	х	х	Е	Е
Dimethyl Carbonal	Е	Ν	Ν	Е	Е	Е	Е	Е	Е
Dimethyl Ether	х	х	х	х	G	х	Е	Е	Е
Dimethyl Formamide	N	Ν	Ν	Ν	Ν	Ν	G	Е	Ν
Dimethyl Ketone	G	F	F	Х	E	F	E	E	E

υ н

Ρ Р Е F м Е Е

> Е Е Е

> > G

Е х М w

Р L D

Ν Ν Ν

Ν G G

Х G Е Е

х G Ν

Е Е Е

Ν Е Ν Е Е

Ν Е Е

Е Е G

G Е Е

Ν G Е Е Е G

Х

х G G G

х Е Е

Х Х Е Е

G Е Ν

G Е Е

Ν Е Е Е Е

Ν Ν Ν

Х Х Е Е

Х Е Ν

Х Е Ν

Х Е Ν

Ν Е Ν

Х Ν Ν

G Е Ν Ν Е

Ν Е Е

Е Х G G

Х G G

х Е Ν

Е Е Е G F

Х G G

Х Е Е

Е Е Ν

Е Е Ν

Е Е Е Ν Е Е

С С С Е Ν

Е G G

Х С Е Е

Е Е Е

G Е Е Е Е

G

G Е Е

G Е Ν Ν

G Е Ν

Е Е G Ν

Ν

Ν

Е Е Х G Е Е

U

100	
2	
<	
<	
<u> </u>	
2	
1	
C.	
-	
ь.	
10	
U	
0	
\leq	
\leq	
_	
~	
O.	
Ē.	
<u> </u>	
Cn.	
- E	
-	
нυ.	
ь	
1	
0	
1.0	
0	
Ξ.	
2	

									н							
							Е	х	м							
		s		Ν	Т	С	Ρ	L	w			s		Ν	Т	С
	Ν	в	С	в	Т	s	D	Р	Ρ		Ν	в	с	в	Т	s
	R	R	R	R	R	М	М	Е	Е		R	R	R	R	R	м
Dimethyl Phenol	х	Ν	Ν	х	Х	х	Х	Е	Е	Ethyl Aldehyde	F	Ν	Ν	Ν	Е	Е
Dimethyl Phthalate	х	х	Х	х	Е	х	G	Е	Е	Ethyl Aluminum Dichloride 90°F	х	Ν	N	Х	х	x
Dimethyl Sulfate	х	х	Х	х	G	х	Х	Е	Е	Ethyl Benzene	х	х	х	F	х	х
Dimethyl Sulfide	х	х	Х	х	С	х	х	G	G	Ethyl Benzoate	х	Х	С	G	G	С
Dimethyl Terephthalate	Ν	Х	Х	Х	Х	Ν	Ν	Ν	Ν	Ethyl Bromide	х	х	х	Х	х	х
Dimethylamine	G	F	G	G	Е	F	Е	Е	Е	Ethyl Butanol	Е	Е	E	Е	Е	E
Dimethylaminoethanol	Ν	Ν	Ν	Ν	Ν	Ν	G	Е	Ν	Ethyl Butyrate	х	х	х	Х	G	Ν
Dimethylaniline	х	х	Х	х	Х	х	С	G	G	Ethyl Butyl Acetate	х	Ν	Ν	Х	Е	G
Dimethylbenzene	Х	Х	Х	Х	Х	Х	Х	Е	Е	Ethyl Butyl Alcohol	Е	Е	Е	Е	Е	Е
Dimethylcarbinol	G	G	G	Е	Е	G	Е	Е	Е	Ethyl Butyl Amine	G	С	G	G	Е	С
Dimethylformamide (DMF)	С	С	С	Х	С	С	С	E	Е	Ethyl Butyl Ketone	х	х	х	Х	G	х
DMP (Dimethylaminoethyl Phenol)	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Е	Ν	Ethyl Butyraldehyde	х	Ν	Ν	Х	G	х
Dinitrobenzene	Х	Х	С	Х	С	Х	С	Е	Е	Ethyl Cellulose	G	G	G	G	G	G
Dinitrotoluene	х	х	Х	х	Х	х	Х	E	Е	Ethyl Chloride	F	F	F	F	х	х
Dioctyl Adipate (DOA)	х	Х	Х	Х	Е	Х	G	Е	Е	Ethyl Chloroformate	Ν	Ν	N	Х	Ν	Ν
Dioctylamine	G	G	Х	G	Е	С	G	E	Е	Ethyl Dichloride	х	Х	х	Х	х	х
Dioctyl Phosphite	N	N	Ν	N	Ν	N	Х	Е	Ν	Ethylene	х	х	G	Е	Х	С
Dloctyl Phthalate (DOP)	х	х	Х	х	G	х	G	Е	Е	Ethyl Ether	х	Х	Х	С	С	Х
Dioctyl Sebacate (DOS)	Х	Х	Х	Х	G	Х	G	E	E	Ethyl Ether Acetate	Ν	N	N	Х	Ν	N
Dioxane	х	х	Х	х	G	Х	G	Е	Е	Ethyl Formate	Х	N	N	Х	G	Х
Dioxolane	X	X	X	X	С	X	G	E	E	Ethyl Hexoic Acid	Х	N	N	Х	X	G
Dipentene	Х	Х	N	Х	N	N	Х	G	N	Ethyl Hexyl Acetate	X	N	N	Х	E	G
Dipentene (Limonene)	X	X	Х	X	С	X	X	E	E	Ethyl lodine	Х	N	X	Х	Х	Х
Diphenyl (Biphenyl)	X	X	X	X	X	X	X	E	E	Ethyl Isobutyl Ether	X	N	N	G	X	G
Diphenyl Oxide (Phenyl Ether)	X	X	X	X	X	C	X	E	E	Ethyl Isobutyrate	X	N	X	X	X	N
Diphenyl Phthalate	X	N	N	X	E	X	N	E	E	Ethyl Mercaptan	X	X	X	X	X	X
Dipropylene Glycol	E	N	N	E	E G	N	N	E	E	Ethyl Pentachlorobenzene	X	X	X	X	X	X
Dipropyl Ketone	X G	X G	X G	X G	E	X C	G E	E	E	Ethyl Phthalate	× ×	X N	N X	X X	G X	N N
Dipropylamine Dirco Oils	N	N	N	E	×	N	×	E	N	Ethyl Propionate Ethyl Silicate	G	G	Ē	^ E	N	N
Disodium Phosphate	E	E	E	E	E	E	Ē	E	E	Ethylamine	F	F	N	N	G	F
Distillate Fuel Oil	N	N	N	N	N	N	X	G	N	Ethylbutanol	N	N	E	E	E	G
Divinyl Benzene	x	x	X	x	x	x	x	E	E	Ethylene Bromide	X	X	X	X	X	x
Dodecyl Benzene	x	x	x	x	x	x	x	E	E	Ethylene Chloride	x	x	x	X	x	x
Dodecylphenol	N	N	N	N	N	N	E	E	N	Ethylene Chlorohydrin	N	N	x	x	G	N
Dodecyl Toluene	x	x	х	x	х	x	x	E	E	Ethylene Diamine	G	G	E	E	E	F
Dolomite	N	N	E	N	N	Е	G	N	N	Ethylene Dibromide	x	x	x	x	x	х
Dowfume W 40, 100%	x	x	С	x	x	С	С	G	G	Ethylene Dichloride	X	x	x	X	X	x
Dow-Per (perchloroethylene)	x	х	х	С	х	х	х	E	E	Ethylene Glycol	E	E	E	E	E	E
Dowtherm Oil, A and E	х	х	х	х	х	с	х	Е	Е	Ethylene Glycol Monoethylether	N	N	N	N	N	N
Dowtherm S. R. I.	Е	Е	Е	Е	Е	Е	Е	Е	Е	Ethylene Glycol Monoethylether Acetate	Ν	Ν	N	Ν	Ν	N
Dry Cleaning Fluids	x	x	x	С	x	x	x	Е	G	Ethylene Glycol Monomethyl Ether	N	N	N	N	N	N
Duro Oils	N	N	Ν	Е	х	N	х	Е	N	Ethylene Glycol N-Butyl Ether	Ν	Ν	Ν	Ν	N	Ν
EDTA (Ethylenediaminetetraacetic Acid)	Ν	Ν	Ν	Ν	Ν	Ν	Е	Е	Ν	Ethylene Oxide	х	х	х	х	х	х
Emulsion (Oil in Water)	N	Ν	Ν	Ν	Ν	Ν	Е	Е	Е	Ethylenediaminetetraacetic Acid (EDTA)	Ν	Ν	Ν	Ν	Ν	Ν
Enamels	Ν	Ν	Ν	Ν	Ν	Ν	х	Е	Ν	Ethylene Trichloride (trichloroethylene)	х	х	x	Х	С	x
Epichlorohydrin	х	х	х	х	С	С	G	G	G	Ethyl Formate	х	х	х	х	G	х
Epoxy Resin	Ν	Ν	Е	Ν	G	Ν	Е	Ν	Ν	Ethyl Hexanol	Е	Е	Е	Е	Е	Е
Essential Oils	х	х	G	Е	Ν	Ν	х	G	Ν	Ethyl Methyl Ketone	С	х	х	х	G	х
Ethanoic Acid	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ethyl Oxalate	Е	Е	Х	Х	Е	Х
Ethanol (Grain Alcohol)	х	х	х	х	х	х	х	Ν	G	Ethyl Propyl Ether	х	х	х	х	х	х
Ethanolamine	G	G	G	G	Е	С	Е	С	Е	Ethyl Propyl Ketone	х	Х	Х	Х	G	Х
Ethers	х	х	х	х	F	F	С	Е	Е	Ethyl Sulfate	х	х	х	х	G	х
Ethyl Acetate	х	х	х	х	G	х	С	Е	Е	Ethylhexanediol	Ν	Ν	Ν	Ν	Ν	Ν
Ethyl Acetoacetate	Х	х	х	х	G	х	G	Е	Е	Ethylhexoic Acid	Ν	Ν	Ν	Ν	Ν	Ν
Ethyl Acrylate	х	х	х	х	С	х	х	G	G	Ethylhexyl Acetate	Ν	Ν	Х	Х	Ν	Х
Ethyl Alcohol	Х	Х	Х	Х	Х	Х	Х	Ν	G	Ethylhexyl Acrylate	Ν	Ν	Ν	Х	Ν	Ν
E - Excellent • G - God			_													

U

									U	
									н	
							Е	Х	М	
		S		Ν	I	С	Р	L	W	
	N	В	c	В	1	s 	D	Р -	P -	
The desired Alexand	R	R	R	R	R	M	M	E	E	
Ethylhexyl Alcohol	E	E	E	N	E	N	E	E	E	Fuel C (ASTM)
Ethylhexyl Phosphorodieth	X	N	N	E	X	X	X	X	N	Fuel Oil
EX. TRI (Trichloroethylene)	X	X	X	С	X	X	X	G	G	Fumaric Acid
Fatty Acids	X	X	C	C	X	X	X	E	E	Furan
Fatty Alcohol, Blend	E	E N	E N	E	E	N N	E	E E	E	Furfural
Fatty Petroleum Alcohol	N				E		E		E	Furfuryl Alcohol
Ferric Bromide	E	N E	N E	N	N E	N	N	N	N E	Fyrguard 150, 200
Ferric Chloride	E		G	E G	G	E G	E G	E		Fyrquel 15R & O, 220 R&O
Ferric Nitrate Ferric Sulfate	E	E	E	E	E	E	E	E	E	Fyrquel 90, 150, 220, 550, Gallic Acid
Ferrous Acetate	X	X	X	X	E	X	G	E	E	Gasohol
Ferrous Ammonium Sulfate	E	Ē	Ē	Ē	E	Ē	E	E	E	Gasoline (oxgenated-blended
Ferrous Chloride	E	E	E	E	E	E	E	E	E	Gasoline - Regular
Ferrous Hydroxide	G	C	E	G	E	G	E	E	E	Gasoline - Hi-Test
Ferrous Nitrate	N	N	G	G	G	G	G	E	N	Gasoline - Lead Free
Ferrous Sulfate	E	E	E	E	E	E	E	E	E	Gasoline (White)
Fertilizer (Liquid Manure)	E	E	E	E	E	E	E	E	E	. ,
	N	N	N	E	X	N	X	E	N	Gas, Coal
Fire-Resistant Hydra-Fluid (Texaco) Fish Oil	X	X	E	E	Ē	E	Ē	E	E	Gas, High Octane Gelatin
Fluoroboric Acid	Ē	c	G	E	E	E	E	E	E	Glacial Acetic Acid
		x	x	X	X	X	X	X	X	
Fluorine	X E	c	G	E	E	E	E	E	E	Glauber's salt
Fluosilicic Acid	C	c	G	G	E	C	G	E	E	Gluconic Acid Glucose
Formaldehyde Formalin (37-50% HCHO w/15% MeOH)	x	x	G	G	G	G	E	E	N	Glue
Formamide	Ē	Ē	E	E	E	E	E	E	E	
	G	G	C	×	E	F	E	C	E	Glycerine (Glycerol)
Formic Acid FR Fluid D	N	N	N	Ē	X	N	X	E		Glycerol Monolaurate
Freon So 2	N	N	E	∟ N	N	N	Ē	N	N	Glycol FR Fluids Glycols
Freon 11	X	X	G	E	X	E	X	E	E	Glyphosate
Freon 12	×	x	G	G	x	X	x	G	G	Graffinite
Freon13	Ē	Ē	E	E	Ē	Ē	E	E	E	Graphite
Freon 21	X	X	G	X	X	X	X	E	E	Grease
Freon 22	×	x	X	Ē	Ē	x	E	E	E	Green Sulfate Liquor
Freon 31	G	G	E	X	E	G	E	E	E	Halium
Freon 32	E	E	E	E	E	E	E	E	E	Halowax Oil
Freon 112	X	x	G	G	x	G	X	E	E	Heptachlor in Petroleum So
Freon 113	C	G	E	E	x	E	x	E	E	Heptachlor in Petroleum So
Freon 114	E	E	E	E	E	E	E	E	E	Water Spray
Freon 115	E	E	E	E	E	E	E	E	E	Heptanal (Heptaldehyde)
Freon 142b	E	E	E	E	E	E	E	E	E	Heptane
Freon 152b	E	E	E	E	E	C	E	E	E	Heptane Carboxylic Acid
Freon 218	E	E	E	E	E	E	E	E	E	Heptanol
Freon C316	E	E	E	E	E	E	E	E	E	Hexaldehyde
Freon C318	E	E	E	E	E	E	E	E	E	Hexane
Freon 1381	E	E	E	E	E	E	E	E	E	Hexanol
Freon 114B2	X	C	E	G	X	E	X	E	E	Hexene
Freon 502	E	E	E	G	Ē	E	E	E	E	
Freon TF	C	G	E	E	E	E	E	E	E	Hexylamine
Freon T-WD602	c	G	G	E	E	G	G	E	E	Hexylene
Freon TMC	G	C	G	G	G	G	G	E	E	Hexylene Glycol
Freon T-P35		E	E	E	E	E	E	E	E	Hexyl Methyl Ketone
	E	E	E	E		E	E	E	E	Hi-Tri (Trichloroethylene)
Freen TA	E				E					Honey
Freen TC	×	G	E	E	E	E	G	E	E	Houghto-Safe 1055, 1110,
Freen BF	X	X	G	G	X	G	X	E	E	Houghto-Safe 271, 416, 520
Freon MF	×	G	C	E	X	G	×	E	E	Houghto-Safe 5046
Fuel A (ASTM)	X	X	G	E	X	F	X	E	E	Houghto-Safe 625, 640, & 5
Fuel B (ASTM)	Х	Х	F	E	Х	Х	Х	G	G	Hy-Chock Oil

	N	S B	С	N B	1	C S	E P D	X L P	H M W P
Fuel C (ASTM)	R X	R X	R C	R G	R X	M	M	E G	E G
Fuel Oil	X	X	G	E	X	E	X	E	E
Fumaric Acid	E	E	G	E	x	G	x	E	E
Furan	x	x	X	x	С	x	C	E	E
Furfural	x	x	c	x	G	G	G	E	E
Furfuryl Alcohol	X	X	c	X	c	c	c	E	E
Fyrguard 150, 200	N	N	N	E	E	N	E	E	N
Fyrquel 15R & O, 220 R&O, 550R&O	N	N	N	E	E	N	E	E	N
Fyrquel 90, 150, 220, 550, 1000	N	N	N	E	E	N	E	E	N
Gallic Acid	E	E	G	G	G	G	G	E	E
Gasohol	X	X	G	G	x	x	x	G	E
Gasoline (oxgenated-blended with MTBE)	x	x	G	G	x	x	x	G	E
Gasoline - Regular	x	x	E	E	x	c	x	E	E
Gasoline - Regular Gasoline - Hi-Test	X	X	G	E	X	X	X	E	E
	x	X	G	G	×	×	X	E	E
Gasoline - Lead Free	X	x	G	G	×	×	×	G	E N
Gasoline (White)			-	-				-	
Gas, Coal	N	N	N	N	N	N	N	N	N
Gas, High Octane	X	X	G	E	X	X	X	E	E
Gelatin	E	E	E	E	E	E	E	E	E
Glacial Acetic Acid	Ν	N	Х	N	Х	N	G	E	E
Glauber's salt	E	E	Ν	Ν	Ν	Ν	E	Ν	N
Gluconic Acid	Х	Х	С	С	С	G	С	E	E
Glucose	E	E	G	G	Е	E	G	E	G
Glue	E	Е	Е	Е	Е	E	Е	Е	E
Glycerine (Glycerol)	E	Е	Е	Е	Е	Е	Е	E	E
Glycerol Monolaurate	N	Ν	Ν	Ν	Е	N	Е	Е	E
Glycol FR Fluids	N	Ν	Ν	E	E	N	E	N	N
Glycols	E	E	E	E	E	E	E	E	E
Glyphosate	N	Ν	Ν	Ν	Ν	N	Е	N	E
Graffinite	х	Ν	N	E	Х	Х	Х	Х	N
Graphite	E	Ν	Ν	Ν	Ν	Ν	Ν	Ν	E
Grease	Х	х	х	х	F	х	E	G	E
Green Sulfate Liquor	E	Е	G	E	E	E	E	E	E
Halium	E	Е	E	E	E	E	E	N	N
Halowax Oil	х	х	х	х	х	х	х	E	E
Heptachlor in Petroleum Solvents	х	Х	G	G	Х	Х	Х	Е	E
Heptachlor in Petroleum Solvents	х	х	G	G	х	х	х	E	E
Water Spray									
Heptanal (Heptaldehyde)	Х	Х	Х	Х	Х	Х	G	E	E
Heptane	х	х	Е	Е	х	G	х	Е	E
Heptane Carboxylic Acid	х	Ν	Ν	Х	Х	G	Ν	Е	E
Heptanol	Е	Е	Е	Е	Е	Е	Е	Е	Е
Hexaldehyde	Ν	Ν	Ν	Ν	Ν	Ν	Е	Е	Е
Hexane	х	х	Е	Е	х	F	х	Е	Е
Hexanol	Е	Е	Е	Е	Е	Е	Е	Е	E
Hexene	х	х	G	G	х	G	х	Е	Е
Hexylamine	G	С	G	G	G	С	G	Е	Е
Hexylene	х	х	G	Е	х	х	С	G	G
Hexylene Glycol	Е	Е	Е	Е	Е	Е	Е	Е	Е
Hexyl Methyl Ketone	х	х	х	х	G	х	G	Е	Е
Hi-Tri (Trichloroethylene)	х	х	х	С	х	х	х	G	G
Honey	Е	Ν	Е	Е	Ν	Ν	Е	Ν	Ν
Houghto-Safe 1055, 1110, 1115, 1120, 1130	Ν	Ν	N	х	Е	Ν	Е	Е	Ν
Houghto-Safe 271, 416, 520, 616 & 620	Ν	Ν	Ν	Е	Е	Ν	Е	Е	Ν
Houghto-Safe 5046	N	Ν	N	Е	Е	N	х	Е	N
Houghto-Safe 625, 640, & 525 under 100°F	Ν	Ν	Ν	Е	Е	N	Е	Е	N
	1		N	Е	N	N	N	1	N

υ н М

Е х

С Ρ L w

s D Р Ρ Е Е

м М Х Е Е

Х х х Е Е

С G G G

G Х Е Е

Ν Е Е Е

Ν

Х Х Е G G

Ν G Е Е

С С G Е Е G G

Е Е Е Е

С G

Х

Х С х Е Е

Х х Е Е Е

F х Е Е

F х Е Ν Ν Ν

Ν G Е Е

Ν Е Е Е

Х Х Ν Ν Ν

Х х С Ν

G

С Х Ν Е Ν

Ν С Е Е

Х

Ν Ν Е Е Е

N Е Е Е Е G Ν

Х G Е Е Е Е

Е Е Е Е

G

Х х Ν Ν

Х

Ν Х Е Е

Х G Е Е

Е G Е Е

Х G Е Е

G

Ν G Е Е Е

Х Х Ν Ν

С G Е Е

G

Е Х Х х Х

F Е Е Е G Е

G Х

Е Ν Е Ν Е

х G Е Е

Е Е Е

Е G Е Е Е Е

Ν Е

G Е Ν

х Е

х G

х Е Е

Х Х

Е Е х G Ν

> х G

Х Е Е

Е Е

х Е Е

Ν Ν

Е Ν

Е Е

Е Ν

Е

Ν

Е

Е

Ν

G G

Е

G

									U					
									н					
							Е	х	м					
		s		Ν	I	С	Ρ	L	w		S		Ν	Т
	Ν	в	С	в	I	S	D	Ρ	Ρ	N	в	С	в	I
Linder fluid 700 (Tenre et 8 Lieuwitstere)	R	R	R	R	R	M	M	E	E	R	R	R	R	R
Hydrafluid 760 (Texaco & Houghton) Hydrafluid AZR&O, A, B, AA, C	N N	N N	N N	E	X X	N N	X X	E	N N	Isobutylene X Isobutyl Ether X	X X	X X	× ×	E X
Hydrasol A (Textile Drying)	N	N	N	E	x	N	x	E	N	Isocyanates C	×	×	×	G
Hydraulic Fluid (Petroleum)	x	x	G	E	x	G	x	E	E	Isooctane X	x	E	E	x
Hydraulic Fluid	x	x	x	X	E	x	E	E	E	Isooctyl Alcohol N	N	N	N	N
Phosphate Ester Based										Isooctyl Thioglycolate N	N	N	N	N
Hydraulic Fluid	G	G	Е	Е	Е	Е	Е	Е	Е	Isopentane X	x	Е	Е	x
Poly Alkylene Glycol Base										Isophorone N	Ν	Ν	х	Е
Hydraulic & Motor Oil	х	х	С	Е	х	G	х	Е	Е	Isopropyl Amine G	x	Е	С	G
Hydrazine	х	Х	Х	х	G	Х	G	Е	N	Isopropyl Acetate X	х	х	х	Е
Hydrazine Hydrate	х	х	х	х	G	х	G	Е	Ν	Isopropyl Alcohol (Iso-propanol) E	E	Е	Е	Е
Hydrazine Solution	Х	Х	Х	Х	G	Х	G	Е	Ν	Isopropyl Amine G	х	Е	С	G
Hydrobromic Acid	Е	х	х	F	Е	Е	G	Е	Е	Isopropyl Benzene X	х	Х	х	х
Hydrochloric Acid 37%	Е	Х	Х	Х	F	Х	Х	E	Е	Isopropyl Chloride X	х	Х	х	х
Hydrochloric Acid 50%	E	С	Х	х	G	E	С	Е	E	Isopropyl Ether X	X	Х	С	Х
Hydrochloric Acid 100%	G	С	Х	Х	С	G	С	E	Е	Isopropyl Toluene X	х	Х	х	х
Hydrocianic Acid	G	F	E	F	E	E	С	E	E	Jet Fuels X	X	G	E	X
Hydro-Drive Oil (Houghton)	N	N	N	E	X	N	X	N	N	Kerosene X	X	C	E	X
Hydrofluoric Acid	X	X	X	X	E	E	X	C	E	Ketchup N	N	E	E	N
Hydrogen Chloride Anhydrous Hydrogen Bromide Liquid	N X	N X	N N	N X	N X	N N	N E	N N	N N	Ketoglutaric Acid N Ketones G	N G	N X	N X	N G
Hydrogen Dioxide 10%	×	×	N	N	F	N	N	N	G	Lacquer X	X	x	x	X
Hydrogen Fluoride	x	x	N	x	G	N	E	N	N	Lacquer Solvents X	x	x	X	x
Hydrogen Gas	X	X	N	x	G	N	E	N	N	Lactic Acid - Cold G	G	E	x	E
Hydrogen peroxide 3%	E	С	G	G	E	E	G	Е	E	Lactic Acid - Hot X	x	х	x	N
Hydrogen Peroxide 10%	х	х	С	х	С	С	С	Е	Е	Lactol N	N	G	G	N
Hydrogen Peroxide 30%	х	х	х	х	х	х	С	Е	Е	Lard X	x	G	Е	x
Hydrogen Peroxide 90%	х	х	х	х	х	х	С	G	G	Lasso (Alachlor) N	Ν	Ν	Ν	Ν
Hydrogen Sulfide	х	х	Е	х	Е	G	Е	Е	Е	Latex Paint G	G	Ν	Е	G
Hydrolube	Ν	Ν	G	Е	G	Ν	Е	Ν	Е	Lauryl Alcohol E	Е	Е	Е	Е
Hydroquinine	G	G	х	х	G	С	G	Е	Е	Lavender Oil X	х	Х	G	х
Hydroxyacetic Acid Solution	Ν	Ν	Ν	Ν	Ν	Ν	G	Е	Е	Lead Acetate X	х	G	G	Е
Hydroxyethyl Acrylate (HEA)	Ν	Ν	Ν	Ν	Ν	Ν	х	Е	Е	Lead Nitrate E	E	Е	Е	Е
Hydroxyethyl Acrylate Acid (HEA Acid	Ν	N	Ν	N	N	Ν	Х	E	E	Lead Sulfamate G	G	Е	G	E
Hydroxypropyl Acrylate Acid	N	N	N	N	N	N	Х	E	E	Lead Sulfate E	E	E	E	E
Hylene	X	X	X	X	G	X	G	N	N	Lead, Tetraethyl X	X	X	G	X
Hypochlrous Acid	G	G	G	X	G	E	G	E	E	Lead, Tetramethyl X	X	X	G	X
Ink Oil (Linseed Oil Base) Insulating Oil	X X	X X	G G	G E	G X	G X	G X	E	E	Lecithin N Ligroin X	N X	G E	X E	N X
Iodine	x	x	x	X	×	F	x	E	E	Liground	x	C	F	Ē
Iron Acetate	x	x	x	x	E	x	G	E	E	Lime, Chlorinated G	G	X	G	G
Iron Hydroxide	С	С	Е	G	Е	G	G	Е	Е	Lime Sulphur Solution X	х	Е	х	х
Iron Salts	Е	Е	Е	Е	Е	Е	Е	Е	Е	Limonene X	x	N	x	N
Iron Sulfate	Е	Е	Е	Е	Е	Е	Е	Е	Е	Lindol (Tricresyl Phosphate) X	х	х	х	Е
Iron Sulfide	Е	Е	Е	Е	Е	Е	Е	Е	Е	Linoleic Acid X	x	х	x	х
Isoamyl Acetate	х	х	х	х	Е	х	G	Е	Е	Linseed Oil X	х	G	Е	Е
Isoamyl Chloride	х	х	х	х	С	х	х	G	G	Liquid Petroleum Gas X	х	G	Е	х
Isoamyl Ether	х	х	Х	х	х	Х	х	Е	Е	Liquid Soap E	Е	Е	Е	Е
Isoamyl Phthalate	х	х	х	х	Е	х	G	Е	Е	Liquified Natural Gas X	х	х	Х	х
Isobutane	х	Х	Е	Е	х	Х	Е	E	Е	Lubrication Oils X	х	С	Е	х
Isobutanol (Isobutyl Alcohol)	Е	Е	E	E	Е	Е	E	Е	Е	Lye Solution G	G	G	Е	E
Isobutyl Acetate	Х	Х	Х	Х	E	Х	G	E	E	Machine Oil Under 135°F X	Х	E	E	х
Isobutyl Aldehyde	C	X	X	X	G	X	G	E	E	Maganese Salts X	X	N	E	N
Isobutyl Amine	G	C	×	X	G	C	G	E	E	Magnesium Acetate X	X	X	X	E
Isobutyl Bromide	X	X	X	X	X	X	X	G	G	Magnesium Carbonate E	E E	E	E	E
Isobutyl Carbinol Isobutyl Chloride	E X	E X	G X	E X	E X	E X	E X	E G	E G	Magnesium Chloride E Magnesium Chloride Brine E	E N	E N	E	E N
	^	^	^	_ ^	^	^		3	3	magnesium onionae brite E	19	1 N		1N

U

									н		
							Е	х	М		
		s		Ν	Т	С	Ρ	L	w	S	N I
	Ν	в	С	в	I	S	D	Ρ	Ρ	N B C	B I
	R	R	R	R	R	М	М	Е	Е		RR
Magnesium Hydrate	E	G	E	G	E	G	E	E	E		X X
Magnesium Hydroxide	E	E	E	E	E	E	G	E	E		XX
Magnesium Nitrate	E	E	E	E	E	E	E	E	E		X G
Magnesium Oxide, Slurry	G	N	E	G	N	N	E	E	Ν		X G
Magnesium Sulfate	E	E	E	E	E	E	E	E	E		EE
Malathion 50 in Aromatic Solvents	X	Х	С	С	Х	X	Х	E	E		X G
Malathion 50 in Aromatic Solvents,	х	х	E	Е	х	х	х	E	Е		X G
Water Spray				_		-	_	~	~		X G
Maleic Acid	X	X	X	F	X	F	F	G	G		G E
Maleic Anhydride	X	X	С	X	С	X	С	E	E		X G
Malic Acid	E	G	С	G	Х	G	X	E	E		X G
Malt Extract (Maltine)	N	N	N	N	N	N	E	E	E		X X
Maganese Sulfate	E	E	E	E	E	E	E	E	E		X X
Maganese Sulfide	С	E	G	E	E	E	G	E	E		X G
Manganese Sulfite	С	E	G	E	E	E	G	E	E	· · · · · · · · · · · · · · · · · · ·	X G
Maxmul (Penzoil Hydraulic Fluid)	N	N	G	Е	N	N	Ν	N	Ν		EE
Mek	G	Х	Х	Х	G	Х	G	Е	G		x x
Mercuric Chloride	G	G	С	С	G	G	С	Е	Е		X G
Mercuric Cyanide Solutions	G	G	E	G	G	E	G	E	Ν		X G
Mercurous Nitrate Solutions	Ν	Ν	Ν	N	Ν	N	G	E	Е		X G
Mercury	E	E	E	E	E	E	E	E	Е		х х
Mercury Vapors	Е	Е	E	Е	E	E	Е	E	Е	Methylallyl Acetate X N N Z	X E
Mesityl Oxide (Methyl Isobutenyl Ketone)	Х	Х	Х	Х	G	Х	G	E	Е		х х
Mesitylene	х	х	х	х	х	Ν	х	Ν	Ν	Methyldiethanolamine X N N	E X
Metallic Soaps	Х	Х	Ν	E	Х	G	Х	E	Е		N N
Methacrylic Acid	Х	х	G	х	G	С	G	E	Е		E X
Methallyl Alcohol	G	Ν	Ν	Е	G	G	Ν	Ν	Ν	Mineral Spirits X X G	E X
Methane	х	х	G	Е	х	G	х	Е	Е	Molasses G G G O	G E
Methanoic Acid	Ν	Ν	Ν	Ν	Ν	Ν	E	Ν	Ν	Molten Sulfur X X N	N G
Methanol (Methyl Alcohol)	х	х	х	х	х	х	х	G	G	Monochlorobenzene X X X X	х х
Methyl Acetate	F	Х	Х	Х	G	Х	G	Е	Е	Monochlorodifluoromethane (Freon 22) X X E	X E
Methyl Acetoacetate	х	Ν	х	х	G	х	G	Ν	Ν	Monoethanolamine G C G	C G
Methyl Acetone	Х	Ν	Ν	Х	G	Х	Е	Ν	Ν	Monochloroacetic Acid G N N Z	х х
Methyl Acrylate	С	Х	С	х	G	х	G	Е	Е	Monoethylamine X X X X	X G
Methyacrylic Acid	Х	Х	Ν	G	Е	Ν	G	Е	Е	Monoisopropanol Amine G N N O	G E
Methylaniline	Ν	Ν	х	х	Ν	G	G	Е	Е	Monomethylether G G E	E E
Methyl Alcohol (Methanol)	Х	Х	Х	Х	Х	Х	Х	G	G	Monopentaerythritol Solution N N N I	N N
Methylallyl Alcohol	G	Ν	Ν	Е	G	G	Ν	Ν	Ν	Monosodium Phosphate G G X	N G
Methylamine (30-40% in water)	Ν	Ν	Ν	Х	Ν	Ν	G	Е	Ν	Monovinyl Acetate X X X X	X G
Methyl Benzene (Toluene)	х	х	х	х	х	х	х	Е	Е	Morpholine N N N	X N
Methyl Bromide	х	Х	Х	G	G	Х	G	Е	Е	Motor Oil - 40W X X E	E X
Methyl Butanathiol	х	х	Ν	Ν	х	Ν	х	Е	Ν	Muriatic Acid E X X	X F
Methyl Butanol	Ν	Ν	Ν	Е	Е	Ν	Е	Е	Е	Mustard E E E	N E
Methyl Butyl Ketone	х	х	х	х	G	х	G	Е	Е	N-Octane X X G G	G X
Methyl Carbitol	х	х	Ν	N	х	х	Е	Е	Ν	Naphta X X G	E X
Methyl Cellosolve	х	х	G	С	G	С	G	Е	Е	Naphtialene X X X X	x x
Methyl Chloride	х	х	х	F	х	х	Е	G	F	Naphthenic Acids X X X 0	G X
Methyl Chloroform	х	х	х	х	х	х	х	G	Ν	Natural Gas X X F	F X
Methyl Chloroformate	х	х	х	х	х	х	х	Ν	Ν	Neatsfoot Oil X X G	E G
Methyl Cyclohexane	х	х	х	х	х	х	х	G	G	Neohexane N N G	E N
Methyl Ethyl Acetate	х	N	N	х	Е	G	х	Е	G	Neon Gas E E E	ΕE
Methyl Ethyl Alcohol	Е	N	Ν	Е	Е	Е	Е	Е	Е	Neu-Tri (Trichloroethylene) X X X 0	c x
Methyl Ethyl Carbinol	Е	N	N	Е	Е	Е	Е	Е	Е		g x
Methyl Ethyl Ketone	х	N	Ν	х	G	х	Ν	Е	Е		хE
Methyl Hexanone	х	N	N	х	G	х	N	N	Ν		ЕE
Methylcyanide	N	N	N	N	Ν	N	х	N	Ν		E E
Methylene Bromide	х	х	х	х	х	х	х	G	С		G G

U н М

G

Е

Е Х

м х х Е G

Е Е

С Р L w

s D Р Ρ

М

Х Х Е Ν Е Е

Х G

С G G Е

Е Е Е

Х G Е Е

Х Ν Ν Ν

Х

G Е Е Е

Х

Х G Е Е

G G G Ν

Х Х Ν Ν Е

Х G Е Ν

х Ν G

Е Е Е Е

Х

Х G Е G G G

Х Х Х Е Ν

Х х Е Х

G

х х Е Е

Ν Е Ν Е

G Х Е Е

Х Х Е Е

Е Е Е Ν

F х Х Ν

Х Х G G Е

Х Е Е

G

Х Х Х Е G Ν

Х Ν Е Е

С С Е Е

Ν Е Е Е

Ν G Е Ν

С С Е Е

Ν х Ν Ν

х Х Е Е

х F Е Е

Е Ν Ν Ν

Х Х G Ν

Х х Е Е

Х Х Е Е Е

Х Х

F Х

G G Е Е Ν

Ν Х

Е Х Ν Ν

Х Ν Х Е Е

х G Е Е

Е Е Е Е

Е Е Е Е

G G Е Е

Х G G

G

G Е Е

Е

Е Е

Е Е

Е G

Е Е Е

Е С

Х

Ν

Е

Х

Е Х Ν G Е

U

н

Е

Е х М

Р L w

D Ρ Ρ

М Е

Х

Ν Е Е

Ν Е Е

Х Е Е

Х Е Е

Е Е Е

Ν Е Е

С Е Е

Х G G Е

Х Е х Е Е

х Е Е

х Х Х

Х Е Е

х

F Е Е

G G Ν

Ν Ν Ν

С

Х Е Е

С Е Е Е

G Е х Х х

Е Е Е

Е Е Е

Е Е Е

Е Е Е

С Е Е

С Х х

G Е Е

Х Е Е

Х Е Е

Х G G Е

Х Е

Е Е Е

Е Е Е

Е Е Е

Е Е Е

Е Е Е

G Е Ν

G Е Е

Е Е Е

Е Е Е

Е Е Е

Е Е Ν

Е Е Е

Е Е Е

G G G

Е Е Е

G Е Е

Е Е Е

Е Е Е

Е Ν Ν

Е Е Е

Е Е Е

Е Ν Ν

Е

Е

Е

G G

G G

Е Е

U

100
2
_
\geq
~
C .
1
S
-
0
<u> </u>
<
-
s.
<u> </u>
C
6
-
=U -
The second
ii
0
S.
0
_

									U H								
							Е	x	м								
		s		N	Т	с	P	Ĺ	W				s		N		с
	N	в	с	в	ì	s	D	P	P			N	в	с	в	÷	s
	R	R	R	R	R	м	м	E	E			R	R	R	R	R	м
Nickel Salts	E	E	E	E	E	E	E	E	N	1	Peanut Oil	X	Х	G	E	С	G
Nickel Sulfate	E	E	E	E	E	E	E	E	E		Pelargonic Acid	х	N	N	E	E	х
Niter Cake	Е	Е	Е	Е	Е	Е	Е	Е	Е		Pentachloroethane	х	х	Ν	Ν	х	х
Nitric Acid, Conc (16N)	х	х	х	х	G	G	Е	G	Ν		Pentachlorophenol in Oil	х	х	х	х	Е	Ν
Nitric Acid, Red Fuming	х	х	х	х	х	х	х	х	х		Pentane	х	х	Е	Е	х	G
Nitric Acid - 10%	х	х	х	х	G	G	G	Е	Е		Pentanol	Е	Ν	Ν	Е	Е	E
Nitric Acid - 13N	N	N	N	Ν	N	N	С	N	N		Pentatone	х	Ν	Ν	х	G	х
Nitric Acid - 13N + 5%	Ν	N	N	Ν	N	N	N	Ν	Ν		Perchloric Acid - 2N	G	G	Е	х	G	Е
Nitric Acid - 20%	х	х	х	х	G	G	F	Е	Е		Perchloroethylene	х	х	х	х	х	х
Nitric Acid - 30%	х	х	х	х	F	F	F	G	G		Petrolatum	х	х	Е	Е	х	С
Nitric Acid - 30% to 70%	х	х	х	х	F	F	С	F	F		Petroleum, Crude	х	х	G	Е	х	х
Nitrobenzene	х	х	х	х	х	х	х	Е	Е		Petroleum Ether (Naptha)	х	х	Е	Е	х	х
Nitroethane	G	G	С	х	G	G	х	Е	N		Petroleum Naptha	х	х	х	х	х	х
Nitrogen Gas	Е	Е	Е	Е	Е	Е	Е	Е	Е		Petroleum Oils	х	х	Е	Е	х	С
Nitrogen Oxide	х	х	х	х	Е	Е	G	Е	N		Petroleum Paraffin Wax	N	N	N	N	N	N
Nitrogen Tetraoxide	х	х	х	х	х	х	х	х	х		Phenol	F	F	F	х	Е	F
Nitromethane	G	G	с	х	G	с	G	Е	Е		Phenol Acid	х	х	х	х	G	х
Nitropropane	С	С	С	х	E	С	G	E	E		Phenolates	N	N	х	х	N	х
Nitrous Oxide Gas	E	E	E	E	Е	E	E	Е	E		Phenolsulfonic Acid	х	х	С	х	С	х
Nonenes	x	N	N	E	x	x	x	E	E		Phenyl Chloride	х	х	х	х	х	х
Octadecanoic Acid	x	х	G	Е	G	х	С	Е	E		Phenylhydrazine	С	х	х	х	G	С
Octane	х	х	G	E	x	х	x	G	G		Phorone	х	х	х	х	E	Х
Octanol (Octyl Alcohol)	G	G	E	G	G	G	G	E	E		Phosgene (Carbonyl Chloride)	х	х	х	х	G	х
Octyl Acetate	x	x	x	x	E	x	G	E	E		Phosphate Esters	x	x	x	X	E	x
Octyl Aldehyde	x	N	N	X	x	x	N	N	N		Phosphoric Acid 10%	E	E	E	E	E	E
Octyl Amine	С	С	G	С	G	С	G	E	E		Phosphoric Acid 10% - 85%	F	F	G	F	E	E
Octyl Carbinol	E	E	E	E	E	E	E	E	E		Phosphorous Trichloride	х	х	х	х	E	x
Octylene Glycol	E	E	E	E	E	E	E	E	E		Pickling Solution	C	С	С	С	С	С
Oil, ASTM #1	x	x	E	E	x	G	x	E	Е		Pitric Acid, Molten	С	С	С	С	С	G
Oil, ASTM #2	x	x	E	E	x	С	x	E	E		Pitric Acid, Water Solution	E	С	G	G	E	E
Oil, ASTM #3	x	X	С	G	E	x	x	E	E		Pinene	X	x	x	E	x	x
Oil - Petroleum	x	x	E	E	x	F	x	E	E		Pine Oil	X	x	x	F	F	x
Oil of Turpentine	x	x	G	E	x	x	x	G	G		Piperidine	x	x	x	x	x	x
Oils, Animal (high fatty acid content)	x	x	G	E	G	x	x	G	N		Pitch	X	x	G	G	X	С
Oleic Acid	x	x	F	С	G	x	G	E	Е		Plating Solutions, Chrome	x	x	G	G	E	С
Oleum (Fuming Sulf Acid)	x	x	x	x	x	x	x	X	X		Plating Solutions, Other	E	E	G	G	E	c
Olive Oil	x	x	G	E	E	G	G	E	E		Polyvinyl Acetate Emulsion (PVA)	C	С	G	С	E	G
Organic Fatty Acids	x	N	N	E	X	x	x	E	E		Polyethylene Glycol	E	E	E	E	E	E
Ortho-Dichlorobenzene	x	x	x	X	x	x	x	E	E		Polypropylene Glycol	E	E	E	E	E	E
Orthodichlorobenzol	x	N	N	x	x	x	x	E	E		Polyurethane Foam Under 125°F	N	N	N	N	G	N
Orthoxylene	x	x	N	N	x	x	x	E	G		Potassium Acetate	x	x	x	x	E	x
OS 45 Hydraulic Fluid (Silicate Ester Base)	x	x	E	G	x	G	x	N	N		Potassium Bicarbonate	E	E	E	E	E	E
Oxalic Acid	F	F	G	F	E	G	E	E	E		Potassium Bisulfate	E	E	E	E	E	E
Oxygen, Cold	G	G	G	G	E	G	G	E	E		Potassium Bisulfite	E	E	E	E	E	E
Oxygen, Hot	x	x	x	x	X	x	x	E	E		Potassium Bromide	E	E	E	E	E	E
Ozone	x	F	G	x	G	E	E	E	E		Potassium Carbonate	E	E	E	E	E	E
Paint Thinner	x	x	x	×	x	X	X	E	E		Potassium Chloride	E	E	E	E	E	E
Paint (Emulsion or Latex)	N					N		E	E					F			F
Paint (Cil or Solvent Based)	X	N X	N N	G G	N X	X	G X	E	E N		Potassium Chromate Potassium Cyanide	X E	X E	E	X E	E E	E
Palmitic Acid	×	x	C	E	E	C	C	G	E		Potassium Cyanide Potassium Dichromate	×	X	G	X	E	F
Palm Oil Paparmakars Alum	X	X	G	E	E	G E	G	E	E		Potassium Hydrate	E	G	G	G	E	G
Papermakers Alum	E	E	E	E	E		E	E	E		Potassium Hydroxide	E	E	C	E	E	E
Para-Dichlorobenzene	X	X	X	X	X	×	×	G	G		Potassium Iodide	N	N	E	E	N	E
Paraffin Wax	×	×	G	E	X	X	X	X	X		Potassium Nitrate	E	E	E	E	E	E
Paraformaldehyde	X	X	G	G	G	G	G	E	E		Potassium Permanganate 5%	X	X	X	X	E	X
Paraldehyde	X	N	N	X	G	X	G	E	E		Potassium Phosphate	N	N	E	N	N	E
Paraxylene	Х	Ν	Ν	Ν	Х	Х	Ν	E	Е		Potassium Silicate	Е	Е	E	Е	E	E
E - Excellent - C - Co						~			-		V II II A I			~ F			

U

									U H		
							Е	х	м		
		s		N	Т	с	P	L	w		
	N	в	с	в	i	s	D	P	Р		
	R	R	R	R	R	м	М	Е	Е		
Potassium Sulfate	Е	Е	Е	Е	Е	Е	Е	Е	Е	1	Soda Ash
Potassium Sulfide	Е	Е	Е	Е	Е	Е	Е	Е	Е		Soda, Caustic (Sodium Hydroxide)
Potassium Sulfite	Е	Е	Е	Е	Е	Е	Е	Е	Е		Soda Lime
Potassium Thiosulfate	N	N	Е	N	N	Е	Е	N	Ν		Soda Niter (Sodium Nitrate)
Producer Gas	х	х	G	Е	х	G	х	Е	Е		Sodium Acetate
Propane	х	х	С	Е	х	G	х	Е	Ν		Sodium Aluminate
Propanediol	Е	Е	G	Е	Е	Е	Е	Е	Е		Sodium Bicarbonate
Propanol	Е	Ν	Ν	Е	Е	Е	Е	Е	Е		Sodium Bichromate Solution
Propionic Acid	G	G	х	х	G	G	G	Е	Е		Sodium Bisulfate
Propyl Acetate	х	х	х	х	G	х	G	Е	Е		Sodium Bisulfite
Propyl Alcohol (Propanol)	Е	Е	Е	Е	Е	Е	Е	Е	Е		Sodium Borate
Propyl Aldehyde	х	Ν	Ν	х	G	х	Ν	Ν	Ν		Sodium Carbonate
Propyl Chloride	х	х	С	х	С	х	С	G	G		Sodium Chloride
Propylene	х	х	х	х	х	х	х	Ν	Ν		Sodium Chloride Solution
Propylene Diamine	G	G	G	G	Е	С	G	Е	Е		Sodium Chromate
Propylene Dichloride	х	х	х	х	х	х	х	G	G		Sodium Cyanide
Propylene Glycol	Е	Е	Е	Е	Е	Е	Е	Е	Е		Sodium Dichromate
Propylene Tetramer	х	Ν	Ν	Е	х	х	х	Е	Е		Sodium Fluoride
Purina Insecticide	Ν	Ν	х	х	G	N	G	Е	Ν		Sodium Hydrate
Puropale RX Oils	Ν	Ν	Ν	Е	х	Ν	х	Е	Ν		Sodium Hydoxide (Caustic Soda)
Pydraul Hydraulic Fluids	х	х	х	х	G	х	G	G	G		Sodium Hypochlorite
^D yranol	х	х	х	С	х	х	х	Е	Е		Sodium Metallic
Pyrene (Carbon Tetrachloride)	х	х	х	х	х	х	х	G	х		Sodium Metaphosphate
Pyridine	х	х	х	х	G	х	G	Е	Е		Sodium Nitrate
^D yroligneous Acid	С	С	G	С	G	G	G	Е	Е		Sodium Nitrite
Pyrrole	С	G	х	х	G	х	С	Е	Е		Sodium Perborate
Quenching Oil	Ν	Ν	G	G	Ν	Ν	Ν	Ν	Ν		Sodium Peroxide
Quintolubric 822	Ν	Ν	G	Е	х	Ν	G	Е	Ν		Sodium Phophate
Rando Oils	Ν	Ν	Ν	Е	х	Ν	х	Е	Ν		Sodium Silfhydrate
Rape Seed Oil	х	х	G	G	Е	G	G	G	G		Sodium Silicate
Red Oil (Crude Oleic Acid)	х	х	G	G	G	G	G	Е	Е		Sodium Sulfate
Refined Wax (Petroleum)	х	х	G	Е	Ν	Ν	Ν	Е	Ν		Sodium Sulfide
Refrigerant 11 - Freon	Х	х	С	Е	х	F	F	G	G		Sodium Sulfite
Refrigerant 12 - Freon	х	х	G	Е	х	х	х	G	G		Sodium Sulphhydrate
Refrigerant 22 - Freon	х	Х	Е	Х	Е	Х	Х	Е	Е		Sodium Thiocyanate Solution
Richfield A Weed Killer 100%	х	х	х	х	х	х	х	G	G		Sodium Thiosulfate
Richfield B Weed Killer 33%	Х	Х	G	G	G	С	Х	G	G		Soinus Oils
Rosin Oil	х	х	Е	Е	х	G	х	Е	Е		Soybean Oil
Rotenone and Water	Е	Е	Е	Е	Е	Е	Е	Е	Е		Spent Acid
Rubilene Oils	Ν	Ν	Ν	Е	х	Ν	х	Е	Ν		Stannic Chloride
Sal Ammoniac	Е	Е	Е	Е	Е	Е	Е	Е	Е		Stannic Sulfide
Salicylic Acid	Е	G	х	х	Е	Е	Е	Е	Е		Stannous Chloride
Sea Water	Е	Е	Е	Е	Е	Е	Е	Е	Е		Stannous Sulfide
Sevin	Ν	Ν	Ν	Ν	Ν	Ν	G	G	Ν		Starch
Sewage	F	F	G	Е	F	Е	G	Е	Е		Starch Gum
Sillicate of Soda	Е	Е	Е	Е	Е	Е	Е	Е	Е		Steam - Below 350°F
Silicone of Soda (Sodium Silicate)	Е	Е	Е	Е	Е	Е	Е	Е	Е		Stearic Acid
Silicate Esters	х	х	Е	G	х	Е	х	Е	Е		Stoddards Solvent
Silicone Greases	Е	Е	Е	Е	Е	Е	Е	Е	Е		STPP (Sodium Tripolyphosphate)
Slicone Oil	Е	F	Е	Е	Е	Е	F	Е	Е		Styrene
Silver Cyanide	Ν	Ν	Е	Ν	Ν	Ν	Ν	Е	Ν		Sugar Solutions (Sucrose - Non F.D.A.)
Siver Nitrate	Е	Е	Е	Е	Е	Е	Е	Е	Е		Sulfamic Acid
Skelly Solvent	х	х	G	Е	х	С	х	Е	Е		Sulfite Liquors
Skydrol Hydraulic Fluids	х	х	х	х	Е	х	Е	Е	Е		Sulfonic Acid
Soap, Liquid	G	G	Е	Е	G	Е	Е	Е	Ν		Sulfur (Molten)
Soap Oil	Ν	Ν	х	х	Ν	х	Ν	Е	G		Sulfur Chloride
Soap Solutions	G	Е	G	Е	Е	Е	Е	Е	Е	1	Sulfur Dioxide

	` A	с	EP	X	U H M W	CE TABLES
	i	s	D	P	P	Y
	R	м	м	Е	Е	
	Е	Е	Е	Е	Е	
	Е	Е	Е	Е	Е	
	Е	G	Е	Е	Е	
	Е	Е	Е	Е	Е	S
	х	X E	G	Е	Е	
	Е	Е	Е	Е	Е	m
	Е	Е	Е	Е	Е	
	Е	G	Е	Е	Ν	
	Е	Е	Е	Е	Е	
	Е	Е	Е	Е	Е	
	Е	Е	Е	Е	Е	S
	Е	Е	Е	E	Е	ö
	E	E	E	E	E	Γ.
	G	G	x	N	N	NA
	E	С	G	G	G	L L
	E	E	E	E	E	S
	E	F	G	E	E	Ď
	E	E	E E	E	E N	N
	G F	G E	E	G E	E	N
	G	F	G	G	G	S
	E G G N	F N	E	N	G N	A
	E	G	E	E	Е	W
	Е	Е	Е	Е	Е	M
	Е	E	Е	Е	Е	N
	Е	х	G	Е	Е	
ļ	Е	X G	Е	G	G	
ļ	Е	Е	Е	Е	Е	
ļ	G	G	Е	G	Ν	
ļ	G E	Е	Е	Е	Е	
	Е	Е	Е	Е	Е	
	Е	E E E	Е	Е	Е	
	E E G E	Е	Е	Е	Е	
ļ	Е	G G E	Е	G	Ν	
ļ	G	G	Е	Е	Ν	
	Е	Е	Е	Е	Е	

Е

Е

Е

G G

Х

Х Е G

Е

Е

Ν

Ν

s

в Ν

Е Е

R R R R

Е Е Е Е

Е G Е G

Е Е Е Е

х Х Х Х

Е Е Е Е

Е Е Е Е

G G G G Е

Е Е

Е Е Е Е

Е Е

Е Е Е Е

G G Х Х

х х С Х

Е Е Е Е

х х С Х

Е Е Е Е G

G G

Е С Е G

F х х Х Ν

Ν Ν

Е Е G Е

Е Е Е Е

Е Е Е Е

С

G G G G

Е G G Е

G х G G

Е Е Е Е

Е Е Е Е

Е Е Е Е

Е Е Е Е

Ν Ν G G

Ν G Е Е

Е Е Е Е

Ν Ν

х Х G G

х Х х х х G х G G

Е

Е Е Е

Е Е

Е Е Е

Е Е G G Ν Е Е Е Ν

Ν Ν Е Е х Ν Е Е Ν

Х Х Х х

х

х

G G Ν

х х Х х Х Х Х Х Х

Е Е

С

G G G G Е Е G Е Е

х

х х Х Х F F F G G

х х

F F G

С в

G G

Е

Е Е

Е Е

Ν

Е

Е

G

G

Х

х

G G

Е

Е Е

G

Е Е

G

G Ν G G

Ν х

Е Е Е Е

Е Е Е Е

х Е Х х

х Х

G

х

G G F G G

Е Е Е

Е Е Е

Е Е Е

G

G х

> Ν Е

Е

Е

G G G G

С Е х

Е

G С

С

С С

х

Х

х

Е

Е

Е

Е

Ν

Е Е Е Е Е Е

G Е G Е Е Е

Х х С

х

Е

U

н х М w L Р Р Е F Е Ν G G Е Е Х G Е Е Е Е Е Е Е F Е F Е F Е F Е F Ν Ν G G х х Е Е Ν G Е Е Е F Е F Е G Е Е Е Е Ν Ν

N N E N C C

Е Е Е Е Ν Ν Ν Ν Е Е Е Е Е Е Е Е Е Е х G G G Е Е Ν Ν Е Е Ν Ν G G Е Е Е Ν Е Е Е Е Ν Ν Е Е Ν Х Е Е Е Е Ν Х Е Е С С G G

U

-
<
<u> </u>
2
2
\geq
- No.
C.
6
0
_
~
>
~
C
60
- e
-
-
2
-
Q
0
2
_

									U H							
							Е	x	м							
		s		Ν	Т	С	Ρ	L	w			s		Ν	Т	С
	Ν	в	С	в	I	S	D	Ρ	Ρ		Ν	в	с	в	Т	S
	R	R	R	R	R	М	М	E	E		R	R	R	R	R	M
Sulfur Hexafluoride	E	E	E	E	E	E	E	E	E	Trichloroacetic Acid	С	G	X	G	G	X
Sulfur Trioxide	х	х	х	х	G	Х	С	G	G	Trichlorobenzene	х	х	Х	х	Х	Х
Sulfuric Acid 60% (200°F)	Х	Х	F	Х	F	G	G	E	E	Trichloroethane	Х	Х	Х	Х	Х	Х
Sulfuric Acid - Conc.	х	х	х	х	х	E	х	E	х	Trichloroethylene	х	х	х	С	Х	Х
Sulfuric Acid - Fuming	Х	х	х	Х	х	Х	х	Х	х	Trichloropropane	Х	х	х	х	Х	Х
Sulfuric Acid 25%	G	G	G	E	E	E	G	E	E	Tricresyl Phosphate (TCP)	х	х	х	х	E	Х
Sulfuric Acid 25% - 50%	G	х	х	F	E	E	E	E	E	Tridecanol	E	Е	E	E	Е	E
Sulfuric Acid 50% - 96%	х	х	F	х	F	G	G	E	Е	Triethanolamine (TEA)	G	G	Е	G	Е	Е
Sulfurous Acid	G	С	G	С	G	E	G	Е	E	Triethylamine	G	G	Е	G	G	Е
Sun R&O Oils	Ν	Ν	Ν	Е	х	Ν	х	Е	Ν	Triethylene Glycol	E	Е	Е	Е	Е	Е
Suntac HP Oils	Ν	Ν	Ν	Е	х	Ν	Х	Е	Ν	Trifluralin	Х	Ν	Ν	х	х	Х
Suntac WR Oils	Ν	Ν	Ν	Е	х	Ν	х	Е	Ν	Trihydoxybenzoic Acid	G	G	х	х	G	Ν
unvis Oils 700, 800, 900	Ν	Ν	Ν	Е	Х	Ν	х	Е	Ν	Trimethylbenzene	х	х	Х	х	Х	Ν
Synthetic Oil (Citgo)	Ν	Ν	Ν	Е	х	Ν	х	Е	Ν	Trinitrophenol	G	G	G	G	G	G
Syrup	Е	Е	G	Ν	Ν	Ν	N	Е	Е	Trinitrotoluene (TNT)	х	х	G	х	х	G
all Oil	х	х	G	Е	х	G	х	Е	Е	Triphenyl Phosphate	х	х	С	х	Е	С
allow	х	х	Е	Е	х	х	х	Е	Е	Tripoly Phosphate	G	G	N	N	G	Ν
annic Acid	Е	G	G	С	Е	G	Е	Е	Е	Trisodium Phosphate	E	Е	Е	Е	Е	Е
ar	х	x	G	G	х	х	х	Е	Е	Tung Oil	х	x	G	Е	С	G
ar Bituminous	х	х	С	G	х	х	х	N	N	Turbine Oil	x	х	G	G	х	G
artaric Acid	Е	Е	G	E	Е	Е	G	Е	Е	Turpentine	x	x	E	E	х	х
ellus Oils	N	N	N	E	x	N	x	E	N	2, 4D With 10% Fuel Oil	x	х	E	E	х	х
ergitol	N	N	N	N	N	N	N	N	x	Ucon Hydrolube Oils	x	x	G	E	E	x
erpineol	x	x	x	x	С	x	С	G	G	Undecanol	G	N	N	E	N	G
ertiary Butyl Alcohol	E	E	E	E	E	E	E	E	E	Undecyl Alcohol	G	N	N	E	N	G
etrachlorobenzene	X	X	X	X	X	X	X	G	G	Union Hydraulic Tractor Fluid	N	N	N	E	x	N
etrachloroethane	X	X	X	X	X	X	X	E	G	Unsymmetrical Dimethyl	Х	Х	Х	х	E	E
etrachloroethylene	X	X	X	X	X	X	X	E	E	Hydrazine (UDMH)	0		~	~	~	_
etrachloromethane	X	Х	Х	Х	Х	Х	Х	G	G	Uran	G	С	G	G	G	E
etrachloronapthalene	х	х	х	х	х	х	х	G	G	Urea	E	F	Е	F	Е	F
etradecanol	E	E	E	E	E	Е	E	E	E	Urethane Formulations	N	Ν	Ν	E	Ν	Ν
etraethylene Glycol	E	E	Е	E	E	E	Е	E	Е	Uric Acid	N	Ν	Ν	N	Ν	Ν
etraethyl Lead	Х	х	С	G	Х	Х	х	Е	E	Varnish	х	х	G	G	х	F
etrahydrofuran (THF)	х	х	х	х	х	х	х	Е	Е	Vegetable Oils	Х	Х	G	E	Е	G
etrahydroxydicyclopentadiene	Х	х	х	х	х	х	Х	Ν	Ν	Versilube	С	С	С	Е	Е	Е
etralin	х	х	х	х	х	х	х	Ν	Ν	Vinegar	E	F	Е	С	Е	Е
heobromo Oil	х	х	G	G	Ν	Ν	N	Е	G	Vinegar Acid	Е	F	Е	F	Е	Е
hionyl Chloride	х	х	х	х	х	х	х	Е	Е	Vinyl Acetate	х	х	х	х	G	F
hiopen	х	х	х	х	G	Ν	х	N	Ν	Vinyl Benzene	х	х	х	х	х	х
ïn Chloride	Е	Е	Е	Е	Е	Е	Е	Е	Е	Vinyl Chloride	F	х	х	х	х	х
in Tetrachloride	Е	Е	Е	Е	Е	Е	Е	Е	Е	Vinyl Cyanide	N	Ν	Ν	N	Ν	Ν
itanium Tetrachloride	х	х	G	F	х	F	F	Е	G	Vinyl Ether	х	х	х	х	х	С
oluene	x	х	х	х	х	х	х	Е	Е	Vinyl Styrene	N	Ν	Ν	Ν	Ν	Ν
oluene Diisocyanate (TDI)	С	с	х	С	Е	х	Е	Е	Е	Vinyl Toluene	x	х	х	х	х	х
oluidine	x	N	N	x	x	x	N	N	N	Vinyl Trichloride	x	х	х	х	х	х
oluol	x	N	N	x	x	x	x	E	E	Vitrea Oils	N	N	N	E	x	N
oxaphene	×	X	G	G	x	x	x	E	E	V.M. & P. Naptha	X	X	E	E	x	X
ransformer Oils (Petroleum Base)	x	x	G	E	x	G	x	E	E	Water, Fresh (NON F.D.A.)	E	E	E	E	Ē	Ē
ransformer Oils (Chloronated Pheynyl	×	×	x	X	×	x	×	G	G	Water Boiling	N	⊑ N	E	⊂ N	⊑ N	N
	^	^	^	^	^	^	^	9	9	-						
Base Askerels)	~				~			_		Water, Salt	E	E	E	G	E	E
ransmission Fluids A	X	X	C	G	X	X	X	E	E	Whiskey	E	E	E	E	E	E
ransmission Fluid B	X	Х	Х	С	Х	Х	Х	E	E	White Liquor	E	E	E	E	G	E
ributoxyethyl Phosphate	х	х	Ν	х	G	х	G	E	х	White Oil	х	Х	G	E	Х	х
ributoxyl Ethylsulfate	Х	Ν	Ν	х	Е	Х	Е	Х	Ν	Wines	E	Е	Е	Е	Е	Е
Tributyl Amine	G	G	G	G	Е	С	Е	Е	Е	Wood Alcohol	E	Е	Е	Е	Е	Е
ributyl Phosphate	Х	х	х	Х	G	Х	G	Е	Е	Xylene (Xytol)	Х	Х	Х	х	Х	Х
ricetin	E	G	G	G	Е	G	Е	Е	Е	Xylidine	х	х	х	х	х	х

CHEMICAL, OIL & SOLVENT RESISTANCE TABLE - RUBBER HOSE

									U
							Е	x	н м
		s		N	ī	с	P	Ĺ	W
	Ν	в	с	в	Т	s	D	Р	Р
	R	R	R	R	R	М	М	Е	Е
Zeolites	G	Е	Е	С	С	Е	Е	Е	Е
Zeric	Ν	Ν	Ν	Е	х	Ν	Х	Е	Ν
Zinc Acetate	С	х	С	С	Е	С	G	Е	Е
Zinc Carbonate	Е	Е	Е	Е	Е	Е	Е	Е	Е
Zince Chloride	Е	Е	Е	Е	Е	Е	G	Е	Е
Zinc Chromate	Е	С	Е	Е	Е	С	Е	G	G
Zinc Sulfate	Е	Е	Е	Е	Е	Е	Е	Е	Е

	Resistance Rating											
Е	Excellent	С	Acceptable									
G	Good	Х	Unsatisfactory									
F	Fair	Ν	No Data									

Maximum temperature 100°F (38°C) unless otherwise specified.

The reader is cautioned that the Chemical, Oil & Solvent Table for Rubber Hose is only a guide and should be used as such. The degree of resistance of an elastomer with a particular fluid depends on such variables as temperature, concentration, pressure, velocity of flow, duration of exposure, aeration, stability of fluid, etc. Also, variations in elastomer types and special compounding of stocks to meet specific service conditions have considerable influence on the results obtained.

TABLE OF CHEMICAL RESISTANCE PVC, TPR, TPE & POLYURETHANE

Warning: The following data has been compiled from generally available sources and should not be relied upon without consulting and following the hose manufacturer's specific chemical recommendations. Neglecting to do so might result in failure of the hose to fulfill its intended purpose. This may result in possible damage to property and serious bodily injury.

bodily injury. 1-EXCELLENT		2-GOOD	;	3-LIMITEI	D	4-UNSATISFACTORY				
Material Conveyed				Hose Con with Tem						
	P\	/C (F°)	TPI	R (F°)	TPE (F°)		Polyurethane			
	68	104	68	104	68	104	68	104		
Acetaldehyde	4	4	4	4	4	4	4	4		
Acetaldehyde 40%	4	4	4	4	4	4	4	4		
Acetate Solvents, crude	4	4	3	4	3	4	3	4		
Acetate Solvents, pure	4	4	3	4	3	4	3	4		
Acetic Acid 0-1%	1	2	1	2	3	4	4	4		
Acetic Acid 20-30%	1	2	1	2	3	4	4	4		
Acetic Acid 80%	2	2	1	2	4	4	4	4		
Acetic Acid Vapors	1	2	1	2	3	3	4	4		
Acetic Acid Glacial	2	3	2	3	4	4	4	4		
Acetic Anhydride	4	4					4	4		
Acetone	2	3	1	1	3	4	3	4		
Acetylene	1	1					1	1		
Acrylonitrite	1	2								
Adipic Acid	2	3					4	4		
Allyl Alcohol 96%	4	4					4	4		
Allyl Chloride	3	3					4	4		
Alum	1	1	1	1	1	1	1	1		
Aluminum Acetate	2	3		-	-	-		-		
Aluminum Alkyl	4	4								
Aluminum Chloride	1	1	1	1	1	1	3	3		
Aluminum Flouride	1	1	1	1	1	1	1	1		
	1	'	1	1	2	2	2	3		
Aluminum Hydroxide Aluminum Nitrate	1	2	1	'	2	2	1	1		
	1	1					1	1		
Aluminum Oxychloride	4	4								
Aluminum Phosphate Solution										
Aluminum Salts	1	1	4	4	4	4		4		
Aluminum Sulphate	1	1	1	1	1	1	1	1		
Aminoethanol	2				•					
Ammonia - aqueous	1		1		3		3	4		
Ammonia- dry gas	3	4	2		3		3	4		
Ammonia- liquid	4	4	3		3		3	4		
Ammoniated Latex	1	3								
Ammonium Acetate	1	1								
Ammonium Bicarbonate	1	1								
Ammonium Carbonate	1	1					1	1		
Ammonium Chloride Solution	1	1					2	3		
Ammonium Flouride 25%	4	4					3	4		
Ammonium Hydroxide (30% NH)	4	4					3	4		
Ammonium Metaphosphate	1	1					2	2		
Ammonium Persulfate	1	1					2	2		
Ammonium Nitrate	1	1					2	2		
Ammonium Phosphate Solutions	1	1								
Ammonium Sulfate	1	1					1	1		
Ammonium Sulfide	1	1	1	1	1	1	1	1		
Ammonium Thiocyanate	1	1	1	1	2	2	2	2		
Amyl Acetate	4	4	·		-	-		-		
Amyl Alcohol	1	2	1	2	4	4	4	4		
Amyl Chloride	4	4	4	4	4	4		•		
Aniline	2	3	1	2	-	-	4	4		
Aniline Chlorohydrate	4	4	I	2			4	4		
-	4	-					4	4		
Aniline Hydrochloride	4	4					4	4		
Animal Gelatin		4	4							
Animal Oils	1	1	1	1						
Ant Oil	4	4					<u> </u>			

TABLE OF CHEMICAL RESISTANCE PVC, TPR, TPE & POLYURETHANE

1-EXCELLENT	2-GOC	D	3-LIMI	TED	4-UNSATISFACTORY						
Material Conveyed					nstruction nperature						
	PV	C (F°)	TPI	R (F°)	-	E (F°)	Polyurethane (F°				
	68	104	68	104	68	104	68	104			
Anthraquinone	1	1		-							
Anthraquinonesufonic Acid	1	1 1					4	4			
Antifreeze Antimony Chloride	1	I									
Antimony Salts	1										
Antimony Trichloride	1	1					1	1			
Apple Sauce/Juice	1	1									
Aqua Ammonia	4	4									
Aqua Regia	3	4	2	3			4	4			
Argon, Compressed	4 3	4 3	1	1							
Aromatic Hydrocarbons Arsenic Acid 80%	1	2	1	1	4	4	4	4			
Arsenic Trichloride	1	1	1		-	-	1	1			
Arsenic Trioxide	1										
Arylsulfonic Acid	3	4					4	4			
Askarel (Transformer Oil)	4	4									
Asphalt	4	4			_	_	· .				
ASTM Fuel Oil # 1	1	1	1	1	2	2	1	1			
ASTM Oil No. 2	4	4	4	4	0	0	4	4			
ASTM Fuel Oil # 3	2 2	3 2	1	1 1	2 2	2 2	1	1 1			
ASTM Fuel A ASTM Fuel B	4	4	1	1	2	2	2	3			
ASTM Fuel C	4	4	1		2	0	2	3			
Baby Food	1	1					-	Ū.			
Baltic Types 100, 150, 200, 300, 500	2										
Barium Carbonate	1	1	1	1	1	1	1	1			
Barium Chloride	1	1	1	1	1	1	1	1			
Barium Hydroxide	1	1					2	3			
Barium Sulfate	1	1 1	1	1 1	1	1	1	1 1			
Barium Sulfide Barley	1	4	1			1					
Basic Copper Arsenate	1	-									
Beer	1	1									
Beet Sugar - liquor	1	1									
Bellows 80-20 Hydraulic Oil	2										
Benzaldehyde	4	4									
Benzene	4	4									
Benzidine Benzeie Asid	4 2	4 3	1	2	4	4	4	4			
Benzoic Acid Benzoic Aldehyde	4	4	'	2	4	4	4	4			
Benzol	4	4	2	3	3	4	3	4			
Benzotrichloride	4	4	_	-	-	-	_	-			
Benzyl Alcohol	1										
Benzyl Chloride	4	4									
Berries	1	1									
Bismuth Carbonate	1	1	1	4			1	1			
Black Liquor Blast Furnace Gas	1	1 4	1	1							
Bleach 12.5% Active CL	2	3	1	2	3	4	3	4			
Borax	1	2	1	1	Ū	-	1	1			
Bordeaux Mixture	1	1	1	1							
Boric Acid	1	1	1	1			4	4			
Boric Oxide	1										
Boron Triflouride	1	1					1	1			
Brake Fluid (Petroleum Base)	2										
Brake Fluid (Synthetic Base)	2 1	1	1	1	3	4	2	3			
Brine Bromic Acid	1	2	1	2	3	4	4	3			
Bromine - Liquid	4	4	3	4	4	4	4	4			
Bromine - Water	4	4	3	4	4	4	4	4			
Bromobenzene	4	4									
Bromochloromethane	4	4									
Bromotoluene	4	4									
Bunker Oil	4	4									

TABLE OF CHEMICAL RESISTANCE
PVC, TPR, TPE & POLYURETHANE1-EXCELLENT2-GOOD3-LIMITED4-UNSATISFACTORY

1-EXCELLENT	2-GO0	D	3-LIMI	ſED	4-UN	SATISFA	CTORY				
				Hose Construction							
Material Conveyed				with Tem	-	(=0)					
	68	C (F°) 104	TPF 68	₹ (F°) 104	TPE 68	(F°) 104	Polyuret 68	hane (F°) 104			
Butadiene	3	4	00	104	00	104	00	104			
Butane	1	1	1	1	1	1	1	1			
Butanol - Primary	4	4					3	4			
Butanol - Secondary	4	4					3	4			
Butter	2	3									
Butyl Acetate	1	-									
Butyl Alcohol	1	2	1	2	1	2	3	4			
Butyl Cellosolve	4	4	3	4							
Butyl Mercaptan	4 3	4 4	2	3							
Butyl Phenol Butyl Stearate	1	4	2	3							
Butylene	1	2	1	1	1	1	1	1			
Butyric Acid 20%	3	4	2	3	3	4	3	4			
Butynedial	4	4	2	5	0	-	4	4			
Cake Alum Solution	1	-					-	-			
Calcium Arsenate	1										
Calcium Bisulfate	1	1	1	1	1	1					
CalciumBisulfide	2										
Calcium Bisulfite	1	1					1	1			
Calcium Carbonate	1	1	1	1	1	1	1	1			
CalciumChlorate	1	1	1	1	2	3	2	3			
Clacium Chloride	1	1	1	1	3	4	3	4			
Calcium Hydrosulfide	2										
Calcium Hydroxide	1	1	1	1	2	3	2	3			
Clacium Hypochlorite	1	1	1	1	4	4	4	4			
Calcium Metasilicate	1										
Calcium Nitrate	1	1	1	1	1	1	1	1			
Calcium Silicate	1										
Calcium Sulfate	1	1	1	1	1	1	1	1			
Calcium Sulfide	2										
Cane Sugar Liquors	4	4									
Carbolic Acid	4	4 1									
Carbon Bisulfide Carbon Dioxide	1	1									
Carbon Disulfide	4	4									
Carbon Monoxide	1	1	1	1	1	1	1	1			
Carbon Tetrachloride	4	4	2	3	3	4	3	4			
Carbolic Acid	4	4	-	0	U	-	Ũ	-			
Carbonic Acid	1	1	1	1	4	4	4	4			
Carrots	1	1	1	1	4	4		-			
Casein	1	2					1	1			
Castor Oil	1	1	1	1	1	1	1	1			
Catsup	1	2									
Caustic Potash	1	1	1	1	3	4	3	4			
Caustic Soda	1	1	1	1	3	4	3	4			
Cellosolve	3	4	2	3	2	3	2	3			
Cellulose Acetate	1										
Cellulose Butyl	1	_									
Cheese	1	2									
Cherries	1	1									
China-Wood Oil	2										
Chlordane	2	4					4	A			
Chloracetic Acid	1	4					4	4			
Chloral Hydrate	1	1					2	3			
Chloric Acid 20%	1	1					4	4 4			
Chlorinated Hydrocarbons Chlorinated Solvents	4	4					+	+			
Chlorine Gas - dry	4	1	1	1	4	4	4	4			
Chlorine Gas - moist	3	4	2	3	3	4	4	4			
Chlorine Trifluoride	4	4		0	U	7	, , , , , , , , , , , , , , , , , , ,	т			
Chloroacetyl Chloride	1										
Chlorobenzene	4	4									
Chlorobromomethane	4	4									
Chloroethane	4	4									

TABLE OF CHEMICAL RESISTANCEPVC, TPR, TPE & POLYURETHANE

Matorial Convoyed PVC (F*) TER (F*) TPE (F*) POP (F*) POP (F*) TPE (F*) POP (F*) <th>1-EXCELLENT</th> <th>2-GO0</th> <th>D</th> <th>3-LIMI</th> <th>TED</th> <th>4-UN</th> <th>ISATISFA</th> <th>CTORY</th> <th></th>	1-EXCELLENT	2-GO0	D	3-LIMI	TED	4-UN	ISATISFA	CTORY	
PVC (F) TPR (F) TPE (F) Polyurothans (F) Chaodam 4 4 68 104 68 104 68 104 Chaodam 4 4 4 68 104 68 104 Chaodam 4 4 4 58 104 68 104 Chaodam 4 4 4 58 104 58 104 Chaodam 1	Material Conveved								
66 104 68 104 68 104 68 104 68 104 Chooperine 4 <th></th> <th>PVC</th> <th>C (F°)</th> <th>TPF</th> <th></th> <th></th> <th>: (F°)</th> <th>Polyuret</th> <th>hane (F°)</th>		PVC	C (F°)	TPF			: (F°)	Polyuret	hane (F°)
Ghordrom 4<									-
Oxboordsource 4 <	Chloroform	4	4						
Characterization 4	Chloropentane		4						
Choose 1 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Characterize34444Choodele1 </td <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			4						
Choosele 2 3			4					4	4
Chooke Symp 1 I <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td>4</td></th<>								4	4
Chrome Alum 1 <th< td=""><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			5						
Chrone Adum 1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
Chronika Trixite 2 3 1 2 4 4 4 Contronika Trixite 2 - - - - - Coll Grave 2 -			1	1	1	1	1	1	1
Chronium Trade 4 4 7 <th7< th=""> 7 <th7< th=""> <t< td=""><td>Chromic Acid 25%</td><td></td><td>3</td><td>1</td><td>2</td><td>4</td><td>4</td><td>4</td><td>4</td></t<></th7<></th7<>	Chromic Acid 25%		3	1	2	4	4	4	4
Cader 2 Coal Gas 1 - - - - - Coal Gas 1 - - - - - - Coal Tar 3 4 1	Chromic Acid 50%			1	2	4	4	4	4
Chape FR Leek 2			4						
Coal Gas 1									
Coardit Tar 4 4 3 3 1 <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-								
Cocount Oil 3 4 1 <th< td=""><td></td><td></td><td>Л</td><td>2</td><td>3</td><td></td><td></td><td>л</td><td>Л</td></th<>			Л	2	3			л	Л
Cola Bourage 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td></t<>						1	1		
Copper Chande 1 2 1 <					'		1		1
Copper Vanide 1 <				1	1	1	1	1	1
Copper Flouride 2% 1				· ·			-		-
Copper Sulphate 1 2 1 1 1 Corto Oils 1 1 2 3 - 1 1 1 Cottonseed Oil 2 3 - 1 1 1 1 Cressole 4 4 3 4 3 4 - - 4 4 Cressole Acid 50% 4 4 1								1	1
Core Oils 1	Copper Nitrate	1		1	1	1	1	1	1
Corn Oils 1 2 3 1 1 1 1 Cortensed Oil 2 3 4 3 4 3 4 1 1 1 Cresside 4 4 3 4 3 4 7	Copper Sulphate								
Cottonseed Oil 2 3								1	1
Cressle 4 4 3 4 3 4 Cressle 4 4 3 4 3 4 4 Cressle 4 4 3 4 1									
Cressite 4<				2	4	0	4	1	1
Cresylic Acid 50% 4 4						3	4		
Crude Oil Sour 1				5	4			4	4
Crude Oil Sweet 1				1	1	1	1		
Crude Wax 1									
Cupric Cyanide 1 Cupric Nitrate 1 Cupric Suffate 1 Cyanide, Copper 1 Cyanide, Silver 1 Cyanide, Silver 1 Cyanide, Silver 1 Cyanide, Solum 1 Cyanide, Solution 1 Cydohexane 4 Cydohexanol 4 Decanol 1 Dematured Alcohol 1 Detergents, synthetic 1 Detergents, synthetic 1 Detergents, synthetic 1 Detergents 1 Diacetone 4 Diacetone 4 Diaziono		1							
Cupric Nitrate 1 Cupric Sulfate 1 Cyanide, Copper 1 Cyanide, Silver 1 Cyanide Sodium 1 Cyanide Solitate 4 Cyclohexanone 4 Cyclohexanone 4 Cyclohexanone 4 Decanol 4 Decanol 1 Deficing Fluid 1 Dentured Alcohol 1 1 1 1 Developers, photographic 1 1 1 1 Developers, photographic 1 1 1 1 Developers, photographic 1 1 1 1 Deatrone 4 Diacetone 4 1 1 Diaziono </td <td>Cupric Chloride</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cupric Chloride	1							
Cupric Sulfate 1 Cyanide, Copper 1 Cyanide, Silver 1 Cyanide, Silver 1 Cyanide, Silver 1 Cyanide, Silver 4 Cyclohexane 4 Cyclohexanone 4 Cyclohexanone 4 Decanol 4 Decanol 4 Decanol 4 Decanol 4 Decanol 4 Decanol 1 Dentured Alcohol 1 Detergents, synthetic 1 2 Dextrino 2 1 1 Dextron 2 1 1 Diacetone 4 4 Diacetone 4 4 Diacetone 1 1 1 Diazinon 2 1 1 1 1 Diazinon 2 1 1 1 1 1 Dibutyl Phthalate 1 1 1 1 1 1	Cupric Cyanide	1							
Cyanide, Copper 1									
Cyanide, Silver 1	-	1							
Cyanide Sodium 1		1							
Cyclohexane 4 4 Cyclohexanol 4 4 Cyclohexanol 4 4 Cyclohexanone 4 4 Cyclohexanone 4 4 Cyclohexanone 4 4 Decanol 4 4 Decanol 1 1 1 3 4 2 4 Demineralized Water 1 1 1 1 3 4 2 4 Dentured Alcohol 1 2 1 <									
Cyclohexanol 4 <t< td=""><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			4						
Cyclohexanone 4 4 Cyclohexanone 4 4 Cymene 4 4 Decanol 4 4 Decing Fluid 1 1 1 3 4 2 4 Dematured Alcohol 1 1 1 1 3 4 2 4 Detergents, synthetic 1 2 1	-							3	4
Cymene 4 4 Decanol 4 4 Decing Fluid 1 1 1 3 4 2 4 Demineralized Water 1 1 1 1 3 4 2 4 Denatured Alcohol 1 1 1 1 3 4 2 4 Detergents, synthetic 1 2 1	-								
Decicing Fluid 1 1 1 1 3 4 2 4 Demineralized Water 1 1 1 1 3 4 2 4 Denatured Alcohol 1 1 1 1 3 4 2 4 Detergents, synthetic 1 2 1 <td>-</td> <td>4</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-	4	4						
Demineralized Water11113424Denatured Alcohol11111111Detergents, synthetic1211111Developers, photographic1111111Dextrin2Dextron2Dextrose121111111Diacetone44Diazinon2Diazo Salts1111Dibutyl Phthalate1 </td <td>Decanol</td> <td>4</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Decanol	4	4						
Denatured Alcohol11111Detergents, synthetic12111Developers, photographic11111Dextrin1211111Dextron21111111Diacetone441111111Diacetone Alcohol441111111Diazinon211111111Diazinon211111111Dibutyl Phthalate111111111Dibutylamine4441111111Dichlorobenzene44411111111									
Detergents, synthetic1211Developers, photographic1111Dextrin1111Dextron21111Dextrose1211111Diacetone44111111Diacetone Alcohol44111111Diazinon2111111Diazinon2111111Dibutyl Phthalate111111Dibutylamine4441111			1	1	1	3	4	2	4
Developers, photographic1111Dextrin1111Dextron21111Dextrose1211111Diacetone44111111Diacetone Alcohol44111111Diazinon21111111Diazinon2111111Diazinon2111111Dibutyl Phthalate1111111Dibutylamine4441111			0		4				
Dextrin11Dextron21111111Dextrose12111111111Diacetone4441111111111Diacetone Alcohol44111111111Diacetone Alcohol2111111111Diazinon21111111111Diazo Salts11111111111Dibutyl Phthalate14411111111Dichlorobenzene44411111111									
Dextron2111 <td></td> <td></td> <td>1</td> <td>'</td> <td>'</td> <td></td> <td></td> <td></td> <td></td>			1	'	'				
Dextrose1211111111Diacetone44Diacetone Alcohol44Diammonium Phosphate1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Diacetone44Diacetone Alcohol44Diammonium Phosphate11Diazinon21Diazo Salts11Dibutyl Phthalate11Dibutylamine44Dichlorobenzene44			2	1	1	1	1	1	1
Diammonium Phosphate1Diazinon2Diazo Salts1Dibutyl Phthalate1Dibutylamine4Dichlorobenzene4									
Diazinon2Diazo Salts11Dibutyl Phthalate1Dibutylamine44Dichlorobenzene44			4						
Diazo Salts11Dibutyl Phthalate11Dibutylamine44Dichlorobenzene44	Diammonium Phosphate								
Dibutyl Phthalate1Dibutylamine4Dichlorobenzene4									
Dibutylamine44Dichlorobenzene44			1						
Dichlorobenzene 4 4	-		А						
	-								
Dichloroethane 4 4									
Dichloroethylene 4 4									

TABLE OF CHEMICAL RESISTANCE
PVC, TPR, TPE & POLYURETHANE
3-LIMITED1-EXCELLENT2-GOOD3-LIMITED4-UNSATISFACTORY

	2-000		3-LIIVII			JANJFA		
				Hose Con				
Material Conveyed	with Temperature							
	PV	C (F°)	TPF	R (F°)	TPE	(F °)	Polyuret	hane (F°)
	68	104	68	104	68	104	68	104
Dichloroethylene	4	4						
Dichloromethane	4	4						
Diesel Oils	3	4	1	2				
Diethanolamine	2							
Diethyl Ether	2							
Diethyl Ketone	4	4						
Diethyl Oxalate	4	4						
Diethylene Dioxide	2							
Diethylene Ether	4	4						
Diethylene Glycol	1	-						
Diglycolic Acid	1	2						
Dihydroxyethyl Ether	1	4						4
Dimethylamine	4	4					4	4
Dimethylbenzene	4 2	4						
Dimethylcarbonal		4						
Dimethylketone Directul Phthalata	4 4	4 4					I	
Dioctyl Phthalate Dioctyl Phosphite	4	4						
	4	4						
Dioxane Disodium Phosphate	4	4	1	1	1	1	1	1
Distilled Water	1	1	1	1	3	4	2	4
DMB (Dimethylbenzene)	4	4			0	-	2	7
Duro Oils	2	-						
EDB (Ethylene Dibromide)	4	4						
Eggs	1	1						
Emulsions, photographic	1	1						
Enamels	2							
Essential Oils	2							
Ethanolamine	2							
Ethers	4	4					2	3
Ethyl Acetate	4	4					_	-
Ethyl Acrylate	4	4						
Ethyl Alcohol	2	3						
Ethyl Alcohol 50-98%	3	4						
Ethyl Bromide	4	4						
Ethyl Chloride	4	4	4	4	4	4	4	4
Ethyl Ether	4	4					2	3
Ethyl Ether Acetate	1							
Ethyl Mercaptan	4	4						
Ethyl Methyl Ketone	4	4						
Ethylbutanol	1							
Ethylbutyl Alcohol	1							
Ethylene Bromide	1	4	1	3	4	4	4	4
Ethylene Chlorohydrin	4	4						
Ethylene Dibromide	4	4						
Ethylene Dichloride	4	4					4	4
Ethylene Glycol	1	1	1	1	2	3	2	3
Ethylene Oxide	4	4					4	4
Ethylhexanol	1							
Ethylhexyl Acrylate	4	4						
Ethylhexyl Alcohol	1							
Fatty Acid	2							
Fatty Alcohol, Blend	1				-	0	0	0
Ferric Chloride	1	1	1	1	2	3	2	3
Ferric Nitrate	1	1	1	1	1	1	1	1
Ferric Sulphate	1	1	1	1	1	1	1	1
Ferrous Chloride	1	1					1	1
Ferrous Nitrate	2							
Ferrous Sulfate Solution	1							
Fertilizer	2	4						
Figs	1	1						
Fish Solubles	1	1						
Fixing Solutions, photographic	1 1	2 4						
Flour	I	4						

TABLE OF CHEMICAL RESISTANCE PVC, TPR, TPE & POLYURETHANE COOD COOD

1-EXCELLENT	2-GOC	D	3-LIMI	TED	4-UN	ISATISFA	CTORY				
Material Conveyed		Hose Construction with Temperature									
	PV	C (F°)	TPI	R (F°)		E (F°)	Polyure	thane (F°)			
	68	104	68	104	68	104	68	104			
Flourobic Acid	1	1	1	1	1	1					
Fluorine	4	4					4	4			
Fluosilic Acid	4	4						4			
Foric Acid	1	3					4	4			
Formaldehyde Solution (to 50%)	1										
Formalin	1	2									
Formic Acid 3% Formic Acid 10%	1	2					4	4			
Formic Acid 10%	1	2					4	4			
Formic Acid 50%	3	4					4	4			
Freon-12	1	2	1	1	1	1	1	1			
Fructose	1	1	1	1	1	1	1	1			
Fruit Pulps and Juices	1	1					1	1			
Fuel Oil	2	3	1	1	1	2	1	1			
Fumaric Acid	4	4									
Furan	4	4									
Furfural	4	4					4	4			
Furfuryl Alcohol	1	3									
Fusel Oil	1										
Gallic Acid Solution	4	4									
Gasohol	4	4									
Gas - cook oven	2	2	1	2	2	2	2	2			
Gas - natural (dry)	1	1	1	1	1	1	1	1			
Gas- natural (wet)	1	1	1	1	1	1	1	1			
Gasoline	4	4									
Gasoline - refined	3	4	1	1	2	3					
Gasoline, Unleaded	4	4									
Gasoline, White	4	4									
Gelatin	1	1	1	1	1	1	1	1			
Gin	1	2									
Ginger Ale	1	1									
Glacial Acetic Acid	4	4	4	4	4	4	4	4			
Glucose	1	1	1	1	1	1	1	1			
Glue	1	1	1	1	1	1					
Glycerine Glycerol	1	1	1			1					
Glycol	1	1	1	1	2	2	1	1			
Glycolic Acid 30%	1	1	1		2	2	4	4			
Grape Juice	1	1					-	7			
Grapefruit Juice	1	1									
Grease	1										
Green Liquor (paper)	1	1									
Heptachlor	4	4									
Heptane	3	4	1	2	1		1				
Heptanol	1										
Hexane	3	4									
Honey	1	1									
HPO (Sodium Thiosulfate)	1										
Hydraulic Fluid	1										
Hydraulic Fluid HF-18, HF-20	2										
Hydrazine	4	4									
Hydro-Drive Oil (houghton)	2										
Hydrobromic Acid	4	4				-					
Hydrochloric Acid 10%	1	1	1	1	4	4	4	4			
Hydrochloric Acid 48%	3	4					4	4			
Hydrocyanic Acid	4	4									
Hydroflouric Acid 4%	2	3					4	4			
Hydroflouric Acid 10%	3	3					4	4			
Hydroflouric Acid 48%	3	4					4	4			
Hydroflouric Acid 60%	3	4					4	4			
Hydrofluosilicic Acid	4	4	1	1	4	4	4	4			
Hydrogen Hydrogen Bromide (Dry) (liquid)	1	2	1		1	1	1	1 1			

TABLE OF CHEMICAL RESISTANCEPVC, TPR, TPE & POLYURETHANE1-EXCELLENT2-GOOD3-LIMITED4-UNSATISFACTORY

	2-600	0	3-LIMI			5a115fa	CIORI		
	Hose Construction with Temperature								
Material Conveyed	D)//		TOP		-	ire TPE (F°) Polyurethane (F°)			
	68	C (F°) 104	68	t (F°) 104	68	(F [°]) 104	68	nane (F°) 104	
Hydrogen Peroxide	4	4	00	104	00	104	00	104	
Hydrogen Peroxide 12%	1	2	1	1	2	3			
Hydrogen Peroxide 50%	1	3	1	2	3	4	2	3	
Hydrogen Peroxide 90%	4	4	3	4	4	4	4	4	
Hydrogen Phosphide	1	3							
Hydrogen Sulfide - Aqueous Solution	1	1							
Hydrogen Sulfide - Dry	1	1							
Hydrolube (water glycol)	1	1							
Hydrolubric Oil	2								
Hydroquinone Solution	2 1	1							
Hydroxylamine Sulfate Hypochlorous Acid	1	1					3	4	
lodine	4	4					0	-	
Iron Acetete Liquor	1	-							
Iron Salts	1								
Iron Sulfate Solution	1								
Isobutanol	2								
Isobutyl Alcohol	2								
Isooctane	4	4							
Isopropanol	2								
Isopropyl Acetate	4	4							
Isopropyl Alcohol	1	2	1	1	3	4			
Isopropyl Ether	4	4							
JP 3, 4, 5	4	4	2	3	3	3	2	3	
Jelly	1	1							
Jet Fuel - All Types	4	4 1							
Karo Syrup Kerosene	4	4	1	1	1	1	1	2	
Ketones	4	4	1	'	1		'	2	
Kraft Liquor (paper)	1	1							
Lacquer Thinner	3	4	2	2	3	3	2		
Lactic Acid 28%	1	1	-	-	Ū.	U U	4	4	
Lard	2	3					-	-	
Lard Oil	1	2					1	2	
Latex Paint	1								
Lauric Acid	1	1	1	1	3	4	3	4	
Lauryl Chlorite	1	1					1	2	
Lauryly Sulfate	1	1							
Lead Acetate	1	1	1	1	1	1	1	1	
Lead Nitrate Solution	1								
Lead, Tetraethyl	1	0							
Lemon Juice	1	2							
	4	4							
Lime. Chloronated Lime, sulfur	1	1							
Linoleic Acid	1	1							
Linseed Oil	1	1	1	1	1	1	1	1	
Liquid Soap	2	·	·	·	·		•		
Liquors	1	2							
Lubricating Oils	4	4	1	1	1	1	1	1	
Machine Oil under 135°F	2								
Magnesium Carbonate	1	1	1	1	1	1	1	1	
Magnesium Hydroxide	1	1	1	1	3	4	2	3	
Magnesium Nitrate	1	1					1	1	
Magnesium Sulfate Solution	1								
Malathion	1								
Maleic Acid Solution	4	4							
Manganese Salts	1								
Manganese Sulfate Solution	1	4							
Mayonnaise	1	1							
MBK (Methyl Butyl Ketone)	4	4							
MEA (Ethanolamine) MEK (Ethyl Methyl Ketope)	4	4							
MEK (Ethyl Methyl Ketone) Mercuric Chloride	2	4	1	1	2	3	2	3	
	2	4	1	I	4	5	4	5	

TABLE OF CHEMICAL RESISTANCEPVC, TPR, TPE & POLYURETHANE

1-EXCELLENT	2-GOO	D	3-LIMI	TED	4-UN	ISATISFA	CTORY			
Material Conveyed	Hose Construction with Temperature									
	PVC	C (F°)	TPF	R (F°)		E (F°)	Polyuret	hane (F°)		
	68	104	68	104	68	104	68	104		
Mercuric Chloride Solution	2									
Mercuric Cyanide	2	2								
Mercuric Nitrate	2	2					2	2		
Mercury Mesitylene	2 4	2 4								
Mesityl Oxide	4	4								
Mesitylene	4	4								
Methanol	4	4	4	4	4	4	4	4		
Methyl Acetate	4	4								
Methyl Acetone	1									
Methyl Alcohol	3	4	2	3	3	4	4	4		
Methyl Bromide	4	4								
Methyl Butanathiol	4	4								
Methyl Butanol Methyl Chloride	4	4					4	4		
Methyl Chloroform	4	4					7	4		
Methyl Cyanise	1	т								
Methyl Ethyl Ketone	4	4	2	3	3	4				
Methy Isobutenyl Ketone	4	4								
Methyl Isobutyl Ketone	4	4								
Methyl Isopropyl Ketone	4	4								
Methyl Methacrylate	1									
Methyl Methacrylate Monomer	4	4								
Methyl Propyl Ketone	4	4								
Methyl Slaicylate	1									
Methyl Sulfate Methylamine	4	4								
Methylaniline	4	4								
Methylene Bromide	4	4								
Methylene Chloride	4	4								
Methylene Dichloride	4	4								
Milk	1	1					1	1		
Mineral Oils	1	2	1	1	1	1	1	1		
Molasses	1	1	1	1	1	1	1	1		
Monochlorobenzene	4	4								
Monomethylamine	4	4								
Monosodium Phosphate Motor Oil	1 3									
Muriatic Acid	4	4								
N-Octane	4	4								
Naphthenic Acid	1									
Naptha	4	4	1	1						
Napthalene	3	4	1	1						
Nickel Chloride Solution	1	1					1	1		
Nickel Nitrate Solution	2						1	1		
Nickel Plating Solution	4	4								
Nickel Salts	2									
Nickel Sulfate Solution Nicotine	1	1					1	1		
Nicotine Acids	1	2	1	1	3	4	3	4		
Nicotine Salts	1	-			5		Ŭ			
Niter Cake	1									
Nitric Acid 10%	1	2		1	4	4	4	4		
Nitric Acid 40%	2	3	1	1	4	4	4	4		
Nitric Acid 60%	3	4	2	3	4	4	4	4		
Nitric Acid 68%	3	4	2	3	4	4	4	4		
Nitric Acid 70%	4	4	3	3	4	4	4	4		
Nitrobenzene	4	4					4	4		
Nitrogen	1 4	4								
Nitrogen Oxide Nitromethane	4	4 4								
Nitrous Acid (up to 10%)	1	-								
Nitrous Oxide	1	1					1	1		
Oats	1	4								

TABLE OF CHEMICAL RESISTANCEPVC, TPR, TPE & POLYURETHANE1-EXCELLENT2-GOOD3-LIMITED4-UNSATISFACTORY

	2-600		3-LIMI			SALISFA	CIORI		
	Hose Construction								
Material Conveyed	with Temperature								
	PV	C (F°)	TPR	R (F°)	TPE	(F°)	Polyuret	hane (F°)	
	68	104	68	104	68	104	68	104	
Octadecanoic Acid	1								
Octanol	2								
Octyl Alcohol	2								
Oil of Turpentine	1								
Oils, Animal	2								
Oils, Mineral	4	4							
Oils, Petroleum	1	2	1	1	1	1	1	1	
Oleic Acid	2	3	1	1	4	4	4	4	
Oleum	4	4	4	4	4	4	4	4	
Olive Oil	2	2							
Ortho-Dichlorobenzene	4	4							
Ortho-xylene	4	4							
Oxalic Acid	4	4							
Oxygen	1	1					1	1	
Ozone	3	4							
Paint	1	0							
Para formaldehyde	1 1	2							
Paraffin	1	2					А	А	
Palmitic Acid 10% Palmitic Acid 70%	3	2 4					4	4 4	
	1	4					4	4	
Peaches Peanut Butter	1	2							
Peanut Oil	2	2							
Peas	1	1							
Pentachlorophenol in Oil	4	4							
Pentane	3	4							
Pentanone	4	4							
Pentasol	2	-							
Perchloric acid	4	4							
Perchloroethylene	4	4							
Petrol	4	4							
Petroleum Ether	3	3	1	1					
Petroleum Naptha	4	4	-	-					
Petroleum Oils (Refined)	1	-							
Petroleum Oils (Sour)	2								
Phenol	4	4							
Phenol Acid	4	4							
Phenyl Chloride	4	4							
Phenolhydrazine	4	4							
Phenolhydrazine Hydrochloride	3	4							
Phosgene (gas)	1	2							
Phosgene (liquid)	4	4							
Phosphorous (yellow)	2	3							
Phosphorous Pentoxide	4	4							
Phosphorous Trichloride	1	1					1	1	
Phosphorous Trichloride	1	1					1	1	
Photographic Chemicals	1	1					1	2	
Photographic Fixing Solutions	1								
Picric Acid	4	4	4	4	4	4	4	4	
Pinene	4	4							
Pitch	2	3	1	1					
Plating Solutions	1	2					1	1	
Polyethylene Glycol	2								
Potash	1								
Potassium Acetate	1	4					4		
Potassium Acid Sulfate	1	1					1	1	
Potassium Antimonate	1	1	4	4	4	4	1	1	
Potassium Bicarbonate	1	1	1	1	1	1	1	1	
Potassium Bichromate	1	1					1	1	
Potassium Bisulfate	1	4						4	
Potassium Bisulfite	1	1					1	1	
Potassium Borate 1%	1	1					1	1	
Potassium Bisulfate	1	4	4	4	4	4	4	4	
Potassium Bromate 10%	T	1	T	Т	T.	1	T	T	

TABLE OF CHEMICAL RESISTANCEPVC, TPR, TPE & POLYURETHANE

1-EXCELLENT	2-GOO	D	3-LIMI	TED	4-UN	SATISFA	CTORY			
Material Conveyed	Hose Construction with Temperature									
indicital conveyed	PVC	C (F°)	TPR	R (F°)	_	(F °)	Polvuret	hane (F°)		
	68	104	68	104	68	104	68	104		
Potassium Bromide	1	1	1	1	1	1	1	1		
Potassium Carbonate	1									
Potassium Chlorate	1									
Potassium Chloride	1	1	1	1	1	2	1	2		
Potassium Chromate	1						2	2		
Potassium Cuprocyanide Potassium Cyanide	1	1	1	1	1	1	1	1		
Potassium Dichromate	1	1		I		1	2	2		
Potassium Ferrocyanide	1	1					1	1		
Poassium Fluoride	1	1	1	1	1	2				
Potassium Hydrate	2									
Potassium Hydroxide	1	1								
Potassium Hypochlorite	2	3					4	4		
Potassium Iodide	1	1	1	1	1	4	1	1		
Potassium Nitrate Potassium Perborate	1	1 1	1 1	1 1	1	1 1	1	1 1		
Potassium Perchlorite	1	1	1	1	'	1	2	3		
Potassium Permanganate	4	4					-	Ũ		
Potassium Persulfate	1									
Potassium Sulfate	1									
Potassium Sulfide	1	1	1	1	1	1	1	1		
Potassium Sulfite	2									
Potassium Thiosulfate	1									
Potatoes	1	1 1	1	1	1	1	1	1		
Propane Propargyl Alcohol	1	1	1	1	•	1	I	'		
Propyl Alcohol	1	2	1	1	2	3	2	3		
Propylene Dichloride	4	4			_	•	4	4		
Propylene Glycol	1						4	4		
Prune Juice	1	1								
Puropale RX Oils	2									
Pyrene	4	4								
Pyrethrum	2 4	4								
Pyridine Pyrogard C, D	2	4								
Red Oil	2									
Regal Oils R&O	2									
Richfield A Weed Killer	1	2								
Rubilene Oils	2									
Salicylic Acid	1									
Salt Water	1	1	1	1	2	3	2	4		
Sauerkraut	2	0						4		
Selenic Acid	1 2	2					4	4		
Sewage Shortening	2	3								
Silicic Acid	1	1					4	4		
Silicone Greases	2							-		
Silicone Oils	2									
Silver Cyanide	1	1					1	1		
Silver Nitrate	1	1	1	1	1	1				
Silver Plating Solution	1	2	1	1	1	1	1	1		
Skydrol 500A & 7000	4	4	1	1	2	2	2	4		
Soap Soda Ash	1	1	1	1	2	3	2	4		
Soda Asn Soda Water	1	1								
Sodium Acetate	1	1					1	1		
Sodium Aliminate Solution	2									
Sodium Arsenite	1	1					1	1		
Sodium Benzoate	1	2	1	1	1	1	1	1		
Sodium Bicarbonate	1	1	1	1	1	1	1	1		
Sodium Bichromate Solution	2									
Sodium Bisufite	1									
Sodium Borate Sodium Bromide	1	1	1	1	1	2	1	2		
oodium biolilide	· ·	1	1	I		~	1	4		

TABLE OF CHEMICAL RESISTANCE
PVC, TPR, TPE & POLYURETHANE
1-EXCELLENT1-EXCELLENT2-GOOD3-LIMITED4-UNSATISFACTORY

Sodum Channels 1 1 1 1 1 2 1 2 Statum Channels 2 -	1-EXCELLEN I	2-G00		3-LIMI	IED	4-014	SAIISFA	CIONI		
PVC (F) TPE (F) IPE (F) IPA (F) <t< th=""><th>Material Conveyed</th><th colspan="9"></th></t<>	Material Conveyed									
68 104 68 104 68 104 68 104 Stordum Caloratine Stordum Totokine Stordum Totokine St		PV	C (F°)				(F°)	Polyurethane (F°)		
Statum Chronie (color and) 1 1 1 1 1 2 1 1 Statum Chronie Soldon 1 1 1 1 1 2 3 3 2 2 Statum Chronie Soldon 2 - - - - - 2 Statum Chronie Soldon 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1								-		
Sandua Channel 2 3 1 2 1 1 2 1 2 2 2 Solution Channels 2 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< <="" td=""><td>Sodium Carbonate (soda ash)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<></th1<></th1<></th1<>	Sodium Carbonate (soda ash)									
Sodum Throate Solution 2	Sodium Chlorate	2	3	1	2	3	3	2	2	
Sodum Channels Z I <thi< th=""> I I <</thi<>	Sodium Chloride		1	1	1	1	2	1	2	
Sodum Cybrone 1 <th1< th=""> 1 1 <t< td=""><td>Sodium Chlorite Solution</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></th1<>	Sodium Chlorite Solution									
Sodum Processing 1 2 1 2 1 2 Sodum Processing 1 <t< td=""><td>Sodium Chromate</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Sodium Chromate									
Sodum Peroxyande 1 1 1 1 1 1 1 Sodum Peroxyande 1 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-									
Sodum Purchase 1 <th1< th=""> 1 1 <</th1<>				1	2	1	2			
Sodum Provine (70%) 1 1 1 2 1 1 2 Sodum Protocolinie 2 -	-									
Sodum Hydrocenific 2	-									
Sadur hydroxulfue 2									2	
Sodum Hydrosultife 1 1 1 3 4 3 4 Sodum Hydrosule 10% 1 1 1 1 3 4 4 4 Sodum Hydrosule 50% 1 2 1 1 2 4 4 4 Sodum Hydrosule 50% 1 2 1 2 4 4 4 Sodum Hydrosule 50% 1 1 1 2 4 4 4 Sodum Hydrosule 50% 1 <	-									
Sodum Hydroxide 10% 1 1 1 1 1 1 1 1 3 4 4 4 4 Sodum Hydroxide 50% 1 3 1 2 1 1 4 4 4 4 Sodum Hydroxide 50% 1 1 1 2 4 5	Sodium Hydrosulfide									
Sadam Hydroxide 35% 1 2 1 1 2 1 1 2 1 1 2 1	Sodium Hydrosulfite	2								
Sodum Hyderodie 50% 1 3 1 2 4 4 Sodum Hyderodie (20%) 1 1 1 1 1 Sodum Hyderodie (20%) 1 1 1 1 1 Sodum Mirale 1 1 1 1 1 1 Sodum Monthe (20%) 1 <td< td=""><td>Sodium Hydroxide 10%</td><td>1</td><td></td><td>1</td><td>1</td><td></td><td>4</td><td>3</td><td>4</td></td<>	Sodium Hydroxide 10%	1		1	1		4	3	4	
Sodium Hypochlorite (20%) 1 </td <td>Sodium Hydroxide 35%</td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>4</td> <td>4</td> <td>4</td>	Sodium Hydroxide 35%					4	4	4	4	
Sodium Hysponitation 1	Sodium Hydroxide 50%			1	2					
Sodium Nitrate 1 - I - 1		-	1					4	4	
Sodum Ninte 1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
Sodium Nirine 1 <			1					1	1	
Sodium Provoide 1 Image: solid strate s										
Sodium Phosphate 1 -		-							I.	
Sodium Phosphate Add 2 2 1 2 4 4 Sodium Sulfade 1 - 1										
Sodium Suitate 1 Image: solid sol			2	1	2	4	4			
Sodium Suffred 2 1	Sodium Silicate	1								
Sodium Sulfice 1	Sodium Sulfate	1								
Sodium Sulfite 1 1 1 1 1 1 1 Sodium Thiosulfat 1 1 1 2 1 1 2 Solum Solus 1 1 1 2 1 2 1 2 Solur Crude Oil 4 4 4 4 4 4 4 5	Sodium Sulfhydrate									
Sodium Sulphydate 2 1 1 3 1 2 Sodium Thiosuffat 1 1 1 2 1 2 Sour Cude Oll 4 4 4 4 5 5 5 Soya Beans 1 4 4 5 5 5 5 Soya Deans 1 1 1 3 5 5 5 Soya Deans 1 1 1 1 5 5 5 Soya Deans 1 1 1 1 2 1 2 Soya Deans 1 1 1 1 2 1 2 Soya Deans 1 1 1 1 2 1 2 Starch Cum 1 1 1 1 2 1 2 Starch Cum 1 1 1 1 2 1 2 Starch Cum 1 1 1 1 1 4 4 Sulfar Dix Cold Solvent 2 2	Sodium Sulfide									
Sodium Thiosuifat 1 1 1 2 Solus Oils 1 - - - - Soya Deans 1 4 4 - <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td>			1					1	1	
Solina Olina 1									0	
Sour Crude Oil 4 4 Soya Beans 1 4 Soya Oil 1 3 Soybean Oil 1 1 Soybean Oil 1 1 Spinach 4 4 Squash 1 1 Stanic Chloride 2			1					1	2	
Soya Beans 1 4 Soya Ol 1 3 Soya Dean 1 3 Soya Dean 1 1 Soya Dean 1 1 Soya Dean 4 4 Spinach 1 1 Squash 1 1 Squash 1 1 Stamic Chloride 2			4							
Saya Oil 1 3 Soybean Oil 1 1 Soybean Oil 1 1 Spint Adid 4 4 Spinach 1 1 1 Squash 1 1 1 Squash 1 1 1 2 1 2 Stannic Chloride 2										
Soybean Oil 1 1 1 Spent Acid 4 4 Spinach 1 1 Stannis Chloride 2 - Stannis Chloride 1 1 1 2 1 2 Starch Cum 1 1 1 1 2 1 2 Starch Cum 1 1 1 1 2 1 2 Starch Cum 1 1 1 1 2 1 2 Stordard Solvent 2 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Spint Acid 4 4 Spinach 1 1 Squash 1 1 Squash 1 1 Stanic Chloride 2 1 Stanic Chloride 1 1 1 2 1 2 Stanic Chloride 1 1 1 1 2 1 2 Stanic Chloride 1 1 1 1 2 1 2 Starch Gum 1 1 1 1 2 1 2 Starch Gum 2 2 5 5 5 1		1								
Squash 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	Spent Acid	4								
Stannic Chloride 2 Image: stanskip (Stanskip (Stanskip)))))))))))	Spinach	1	1							
Stanis Chorde 1 1 1 1 2 1 2 Stanis Chorde 1 1 1 1 2 1 2 Starch 1 1 1 1 1 2 1 2 Starch Gum 1 1 1 1 1 2 1 2 Staright Synthetic Oils 2 -	Squash	1	1							
Starch Gum 1	Stannic Chloride	2								
Starch Gum 1	Stannis Chloride	1	1	1	1	1	2	1	2	
Stearic Acid 1	Starch	1								
Stoddard Solvent 2		1								
Straight Synthetic Oils 2 4 4 Styrene 4 4 4 Sugar - all forms 1 1 1 Sulfarc Acid 4 4 4 Sulfarc Liquors under 150° F 1										
Styrene 4 4 Sugar - all forms 1 1 Sulfamic Acid 4 4 Sulfate Liquors under 150° F 1 - Sulfur 2 2 Sulfur Chloride 2 - Sulfur Dioxide (dry) 1 - Sulfur Dioxide (dry) 1 - Sulfur Acid 4 4 Sulfur Dioxide (Gas) 2 - Sulfur Acid 10% 1 - Sulfuric Acid 10% 1 2 Sulfuric Acid 70% 1 2 Sulfuric Acid 95% 3 3 Sulfuric Acid 95% 3 1 2 Sulfur Dioxide Gas - dry 1 1 4 4 Sulfur Dioxide Gas - wet 4 4 4		2								
Sugar - all forms 1 1 1 Sulfar- Acid 4 4 Sulfare Liquors under 150° F 1 - Sulfur 2 2 Sulfur Chloride 2 - Sulfur Dioxide (dry) 1 - Sulfur Dioxide (liquid) 4 4 Sulfur Trioxide 2 - Sulfur Trioxide 1 2 1 Sulfur Chiol Acid 10% 1 2 1 1 Sulfur Trioxide 1 2 1 1 4 4 Sulfur Chiol Acid 10% 1 2 1 1 4 4 4 Sulfuric Acid 10% 1 2 1 1 4 4 4 Sulfuric Acid 95% 3 3 1 2 4 4 4 Sulfur Dioxide Gas - dry 1 1 1 2 4 4 4 Sulfur Dioxide Gas - wet 4 4 4 4 4 4			4							
Suffamic Acid44Sulfamic Acid1Sulfare Liquors under 150° F1Sulfur2Sulfur Chloride2Sulfur Dioxide (dry)1Sulfur Dioxide (liquid)4Sulfur Hexafluoride (Gas)Sulfur TrioxideSulfur ChirdeSulfur ChirdeSulfur ChirdeSulfur Dioxide (liquid)44Sulfur TrioxideSulfur ChirdeSulfur Dioxide Gas - drySulfur Dioxide Gas - wetSulfur Dioxide Gas - wetSulfur Dioxide Gas - wetSulfur Dioxide Gas - wetSulfur Dioxide ChirdeSulfur Dioxide ChirdeSulf										
Sulfur 2 2 Sulfur Chloride 2	Sulfamic Acid									
Sulfur Chloride21Sulfur Dioxide (dry)144Sulfur Dioxide (liquid)44Sulfur Hexafluoride (Gas)2Sulfur Trioxide12Sulfur Chcid 10%12Sulfur Acid 10%12Sulfur Acid 70%12Sulfuric Acid 95%33Sulfurous Acid23Sulfur Dioxide Gas - dry11Sulfur Dioxide Gas - wet4	Sulfate Liquors under 150° F	1								
Sulfur Dioxide (dry) 1 Sulfur Dioxide (liquid) 4 4 Sulfur Dioxide (Gas) 2 Sulfur Trioxide 1 2 Sulfur Chaid 10% 1 2 1 1 3 4 3 4 Sulfur Chaid 10% 1 2 1 1 3 4 4 4 Sulfuric Acid 70% 1 2 1 1 4 4 4 Sulfuric Acid 95% 3 3 1 2 4 4 4 Sulfurous Acid 2 3 1 2 4 4 4 Sulfur Dioxide Gas - dry 1 1 1 4 4 4 Sulfur Dioxide Gas - wet 4 4 4 4 4	Sulfur		2							
Sulfur Dioxide (liquid) 4 4 Sulfur Dioxide (liquid) 2	Sulfur Chloride									
Sulfur Hexafluoride (Gas) 2 Sulfur Trioxide 1 Sulfur Trioxide 1 Sulfuric Acid 10% 1 2 1 1 3 4 3 4 Sulfuric Acid 10% 1 2 1 1 3 4 4 4 Sulfuric Acid 70% 1 2 1 1 4 4 4 Sulfuric Acid 95% 3 3 1 2 4 4 4 Sulfurous Acid 2 3 1 2 4 4 4 Sulfur Dioxide Gas - dry 1 1 1 2 4 4 4 Sulfur Dioxide Gas - wet 4 4 4 4 4	Sulfur Dioxide (dry)									
Sulfur Trioxide 1 1 2 1 1 3 4 3 4 Sulfuric Acid 10% 1 2 1 1 3 4 4 4 Sulfuric Acid 70% 1 2 1 1 4 4 4 4 Sulfuric Acid 95% 3 3 1 2 4 4 4 4 Sulfurous Acid 2 3 1 2 4 4 4 4 Sulfur Dioxide Gas - dry 1 1 1 1 1 4 4 4 Sulfur Dioxide Gas - wet 4 4 4 4 4 4	Sulfur Dioxide (liquid)		4							
Sulfuric Acid 10% 1 2 1 1 3 4 3 4 Sulfuric Acid 70% 1 2 1 1 4 4 4 4 Sulfuric Acid 95% 3 3 1 2 4 4 4 4 Sulfuric Acid 95% 3 3 1 2 4 4 4 4 Sulfurous Acid 2 3 1 2 4 4 4 4 Sulfur Dioxide Gas - dry 1 1 -	Sulfur Hexafluoride (Gas)									
Sulfuric Acid 70% 1 2 1 1 4 4 4 4 Sulfuric Acid 95% 3 3 1 2 4 4 4 4 Sulfuric Acid 95% 3 3 1 2 4 4 4 4 Sulfurous Acid 2 3 1 2 4 4 4 4 Sulfur Dioxide Gas - dry 1 1 -<			0	4	А	0	А	2	4	
Sulfuric Acid 95% 3 3 1 2 4 4 4 4 Sulfurous Acid 2 3 1 2 4 4 4 4 Sulfurous Acid 1 1 2 4 4 4 4 Sulfur Dioxide Gas - dry 1 1 -		-		-						
Sulfurous Acid2312444Sulphur Dioxide Gas - dry111111Sulfur Dioxide Gas - wet44411										
Sulphur Dioxide Gas - dry 1 1 Sulfur Dioxide Gas - wet 4 4										
Sulfur Dioxide Gas - wet 4 4					-		•			
	Sulfur Dioxide Gas - wet									
	Sulfur Dioxide - Liquid									

TABLE OF CHEMICAL RESISTANCEPVC, TPR, TPE & POLYURETHANE

1-EXCELLENT	2-GOC	DD	3-LIMI	TED	4-UN	ISATISFA	CTORY	
Material Conveyed				Hose Cor with Terr	struction			
Material Conveyed	PV	C (F°)	ТРБ	R (F°)		: (F °)	Polyuret	thane (F°)
	68	104	68	104	68	104	68	104
Sun R&O Oils	2							
Suntac HP Oils	2							
Suntac WR Oils	2							
Sunvis Oils 700, 800, 900	2							
Synthetic Oil (Citgo)	2							
Tall Oil	4	4						
Tallow	2							
Tannic Acid	1	1	1	1	3	4	3	4
Tanning Liquors	1	1						
Tar Oil	2	0	4	4	0	0	0	
Tartaric Acid	1	2 3	1	1	2	3	3	4
TEA (Triethanolamine)	2 2	3						
Tellus Oils Tenol Oils	2							
Terpineol	2							
Tetrachloroethane	4	4						
Tetraethyl Lead	2	3						
Tetrahydrofuran	4	4						
Tetrahydroxydicyclopentadiene	4	4						
THF (Tetrahydrofuran)	4	4						
Thionyl Chloride	4	4					4	4
Tin Chloride	1	1	1	1	1	1		
Titanium Tetrachloride	1	4					3	4
Toluene	4	4	2	2	3	4		
Toluol	4	4						
Tomatoes	1	1						
Tributyl Phosphate	4	4						
Trichloroethylene	4	4					3	4
Trichloroethane	4	4						
Tricresyl Phosphate	4	4					4	4
Triethanolamine	3	4						
Triethylamine	2	3						
Trihydroxybenzoic Acid	4	4						
Trimethylbenzene	4	4						
Trimethyl Propane	3	4						
Trinitrophenol	1							
Trisodium Phosphate	1	1	1	1	1	1	1	1
Tung Oil	2				-	-		-
Turpentine	3	4	1	1	2	3	1	2
Ucon Hydrolube Types 150CP, 200CP	2							
Ucon Hydrolube Types 275CP,300CP, 550CP	2							
Ucon M1	2							
Union Hydraulic Tractor Fluid	2	0	4	4	4	4	4	A
Urea	1	2 1	1	1	1	1	1	1 1
Urine	1 4	1 4	1	1 1	1 1	1 2	1	1
Varnish Vegetable Oils	4 2	4		I.		2		2
Versilube F-50, F-44	2	5						
Vinegar	1	2					2	3
Vingal Vinyl Acetate	4	4					4	4
Vinyl Chloride	4	4					-	т
Vinyl Trichloride	4	4						
Vitrea Oils	2	-						
Vodka	1	2						
Water Acid - mine water	1	1	1	1	3	4	2	4
Water in Oil Emulsions	1							
Water - distilled	1	1	1	1	3	4	2	4
Water - fresh	1	1	1	1	3	4	2	4
Water - salt	1	1	1	1	3	4	2	4
Whiskey	1	2						
White Gasoline	1	1	1	1	1	2	1	2
White Liquor (paper)	1	1						
Wines	1	2						

TABLE OF CHEMICAL RESISTANCEPVC,TPR,TPE & POLYURETHANE

1-EXCELLENT

2-GOOD

3-LIMITED

4-UNSATISFACTORY

Material Conveyed	Hose Construction with Temperature								
	PVC	C (F°)	TPF	R (F°)	TPE	E (F °)	Polyuret	hane (F°)	
	68	104	68	104	68	104	68	104	
Wood Oil	1								
Xylene	4	4	1	1	2	3	2	3	
Xylol	4	4	1	1	2	3	2	3	
Yeast	1	2							
Yogurt	1	2							
Zeric	2								
Zinc Acetate	1								
Zinc Chloride Solutions	1								
Zinc Chromate	1	1	1	1	1	1	1	1	
Zinc Cyanide	1	1	1	1	1	1	1	1	
Zinc Hydrate	1								
Zinc Nitrate	1	1	1	1	1		1	1	
Zinc Sulfate	1	1	1	1	1	1	1	1	

COUPLING MATERIAL CORROSION RESISTANCE

WARNING: The following data has been compiled from generally available sources and should not be relied upon without consulting and following the hose manufacturer's specific chemical recommendations. Neglecting to do so might result in failure of the hose to fulfill it's intended purpose, and may result in possible damage to property and serious bodily injury.

	Resistance Rating											
	Metal Non-Metal											
E	Excellent	Α	Acceptable									
G	Good	Х	Not Recommended									
F	Fair	С	Contact Factory									
X	Not Recommended											
С	Contact Factory											

- **1.** Ratings given are based at +70°F (+21°C). Chemical compatibility varies greatly with temperature. For applications at temperatures other than +70°F (+21°C), contact the manufacturer for recommendations.
- **2.** Chemical resistance of a material does not necessarily indicate the suitability of a fitting in a given application due to variables such as improper clamp and coupling application, special hose construction, gasket material, etc.

SPECIAL CAUTION SHOULD BE TAKEN WHEN HANDLING HAZARDOUS MATERIALS.

MATERIAL	Aluminum	Brass	Carbon Steel	Stainless Steel, 304	Stainless Steel, 316	Nylon	Poly-	MATERIAL	Aluminum	Brass	Carbon Steel	Stainless Steel, 304	Stainless Steel, 316	Nylon	Poly-
Absorption Oil		Е	Steel	31661, 304	steel, 510		Propylene	Aminoethanol		Е	E	E	E		Propylene
Acetal		E						Ammonia Anhydrous	Е	x	E	G	E	А	х
Acetaldehyde	Е	E	Е	Е	Е		Е	Ammonia Gas	x	x	E	E	E	A	x
Acetamide	E	x	-	G	-		-	Ammonia Nitrate	C	C	c	C	C	X	C
Acetate Solvents (Crude)	E	x	G	E	Е	А	х	Ammonium Acetate	Ŭ	x	Ŭ	E	E	~	E
Acetate Solvents (Pure)	E	E	×	E	E	A	X	Ammonium Bifluoride	С	X	х	C	C	х	Ā
Acetic Acid (80%)	F	X	x	E	E	x	x	Ammonium Carbonate	G	x	G	G	G	A	A
Acetic Acid (50%)	G	X	X	G	E	X	X	Ammonium Casenate	C	c	C	C	C	A	C
Acetic Acid (20%)	G	x	x	G	E	x	x	Ammonium Chloride	x	x	x	x	x	A	A
Acetic Acid (20%)	G	X	X	E	E	x	X	Ammonium Hydroxide	G	X	E	G	G	Â	Â
Acetic Anhydride	G	x	G	G	G	x	x	Ammonium Metaphosphate	x	^	E	E	E	<u>^</u>	E
Acetic Ether	E	E	E	E	E	~	G	Ammonium Nitrate	G	x	X	C	C	А	A
Acetic Oxide	G	X	X	G	G		x	Ammonium Nitrite	0	^	~	E	E	<u>^</u>	E
Acetone	E	G	G	E	E	А	X	Ammonium Persulfate		x		E	E		X
Acetophenone	L .	0	G	L .	L .	~	G	Ammonium Phosphate	х	x	х	E	G	А	Â
Acetylene	Е	х	G	Е	Е	х	X	Ammonium Sulfate	×	Ŷ	×	X	G	A	A
Acetyl Oxide	G	x	X	G	G	^	x	Ammonium Sulfide	x	x	Ē	Ē	E	~	E
,	G	^	^	G	G		×		^	^	E	E	E		E
Acetylene Dichloride Aeroshell 7A, 17 Grease	Е		Е	Е	Е		^	Ammonium Thiocyanate Amyl Acetate	х	Е	X	E	E		X
Air 212° F	E	Е	E	E	E			,	Ē	F	Ē	E	E		^
	E	E	E	E	E		Е	Amyl Alcohol	E	E	E	E	E		х
Air, Ambient	F		E	E			E	Amyl Chloride				E	E		^
Aircraft Hydraulic Oil AA	E	E	E		E			Amy Chloronapthalene				-	_		
Alachlor (Lasso)	-		-	E	E			Amyl Napthalene				E	E		
Alcohol - Amyl	G	G	G	G	G	A	X	Amyl Phenol				E	E		_
Alcohol - Benzyl	G	G	G	E	E	A	Х	Anethole	G	X	G	E	E		E
Alcohol - Butyl	E	G	G	E	E	Х	X	Aniline	С	Х	х	E	E	х	х
Alcohol - Diacetone	E	E	G	G	G	х	х	Aniline Hydrochloride		Х		х	х		G
Alcohol - Ethyl	E	G	G	G	G	Х	Х	Aniline Oil	G	Х	G	E	E		E
Alcohol - Hexyl	С	С	С	С	С	х	Х	Animal Fat (Lard)	E	х	E	E	E		
Alcohol - Isobutyl	С	С	С	С	С	Х	Х	Animal Gelatin				E	E		
Alcohol - Isopropyl	G	G	G	G	G	х	Х	Animal Oils	E		E	E	E		
Alcohol - Methyl	G	G	G	G	G	Х	Х	Ant Oil	E	E	G	E	E		G
Alcohol - Octyl	С	С	С	С	С	A	Х	Antifreeze	E	E	E	E	E		E
Alcohol - Propyl	G	G	G	E	E	Х	Х	Aqua Ammonia		Х	G	E	E		E
Alkyaryl Sulfonate			E	E				Aqua Regia				Х	Х		Х
Allomalaic Acid Solution			E	E				Aromatic Hydrocarbons	G	G	E	E	E		
Allyl Chloride			E	E				Arsenic Acid	G		G		E		G
Aluminum Acetate		Х		E	E			Askarel (Transformer Oil)		E	E	E	E		G
Aluminum Bromide		Х	х	G	G			Asphalt	С	С	G	С	G	Х	Х
Aluminum Chloride	Х	Х	Х	Х	Х	Α	Α	Asphalt (Cut Back)		E	E	E	E		
Aluminum Fluoride	G	С	х	х	G	Х	A	ASTM Oil No. 1	E	E	E	E	E		G
Aluminum Nitrate	F	Х	Х	G	G	Α	Α	ASTM Oil No. 2	E	E	E	E	E		Х
Aluminum Potassium Sulfate	G	G	х	х	G	Х	A	ASTM Oil No. 3	E	E	E	E	E		Х
Aluminum Salts	G			G	G		E	ASTM Reference Fuel A	E	E	E	E	E		Х
Aluminum Sulfate	Х	Х	х	С	G	Α	A	ASTM Reference Fuel B	E	E	E	E	E		Х
Amines (Mixed)	Х	Х		E				ASTM Reference Fuel C	E	E	E	E	E		Х

COUPLING MATERIAL CORROSION RESISTANCE

Ratings given are based at +70°F (+21°C).

efindin	Batic Types 100, 150, 200, 300, 500 Image: Second	G Calcium Oxide Calcium Silica Calcium Sulfa Calcium Sulfa A Caliche Liquo A Cane Sugar L				Steel
All L E E E E E E E E E Calcum Sufface AB - - C E E E Calcum Sufface Calcum Sufface m Gabonate X G G G G A A Calcum Sufface m Nydoxide X G G G G A A Calcum Sufface Signal Lupons X G G G G G G A A Carbon Builde signal Lupons X - G G G G G G G G G Carbon Dubate-Doil ms Builde Calcum Sufface - - Carbon Dubate-Doil Carbon Dubate-Doil Carbon Dubate-Doil ms Builde Calcum Sufface - E E E Carbon Dubate-Doil Carbon Dubate-Doil ms Builde Calcum Sufface - - Carbon Dubate-Doil	nvelEEEEErdol BFGEEEFriteGEEEFFrium CarbonateXGGGGArium ChlorideCGCXCArium HydroxideXGGGGArium SulfateGGXGGArium SulfateEGGGArerEGGEEAresCGGGXXillows 80-20 Hydraulic OilTTTinzaldehydeGGGGXinzene, BenzolEGGGGinzenesulfonic AcidXXXGG	Calcium Silicate Calcium Sulfate Calcium Sulfide A Caliche Liquors A Cane Sugar Liquors				
SBFieldFieldFieldFieldFieldFieldFieldFieldCalcum Subfalein clondineXGKGKAACalcum Subfalein ClondineXGKGKGAAACalcum Subfalein ClondineXGKGGKAAACalcum Subfalein SubfaleXGKGGAAACalcum Subfalein SubfaleXGGGKAAACalcum Subfalein SubfaleXGGGAAACalcum Subfalein SubfaleXGGGAAACalcum Subfalein SubfaleXGGGAAACalcum Subfalein SubfaleXGGGAAACalcum Subfalein SubfaleXGGGAAACalcum Subfalein SubfaleXXGGGAAACalcum Subfalein Calcum SubfaleXXGGGAAACalcum Subfalein Calcum SubfaleXXGGGAAACalcum Subfalein Calcum SubfaleXXGGGAAACalcum Subfalein Calcum SubfaleXXGG	rhold BIEEEEriteGEEEErium CarbonateXGGGGArium ChlorideCGCXCArium HydroxideXGGGGArium SulfateGGXGGArium SulfateCGGGArium SulfateGGGAArerEGGEEAret Sugar LiquorsXXXXXinoxa0e-20 Hydraulic Oilinzene, BenzolEGGGAinzenesulfonic AcidX-XXG	Calcium Sulfate Calcium Sulfide A Caliche Liquors A Cane Sugar Liquors		_		
n n	te G E E E E um Carbonate X G G G G A um Chloride C G C X C A um Chloride X G G G G A um Sulfate G G X G G A um Sulfide X X G G A A um Sulfide X X G G A A um Sulfide X X G G A A r E G G E A A rs (sgar Liquors X X X X X A sw80-20 Hydraulic Oil T T T T T T zene, Benzol E G G G A A T zenesulfonic Acid X X X G G A T	Calcium Sulfide A Caliche Liquors A Cane Sugar Liquors		E		
m canonieXGGGGGGAAACalcine Supple Lygonsm ChloradeXGGXGAACarboic Acid (react)Am SuffacXGGAGAACarboic Acid (react)Am SuffacXXGGAAACarboic Acid (react)Am SuffacXXGGAAACarboic Acid (react)Am SuffacXXGGAXACarboic Diadic Acid (react)Am SuffacXXGGAXXCarboic Diadic Acid (react)Am SuffacEGGXGGXXCarboic Diadic Acid (react)Am SuffacEGGXGGXXCarboic Diadic Acid (react)Am SuffacEGGXGGXXCarboic Diadic Acid (react)Am SuffacEEGGXXCarboic Diadic Acid (react)AACarboic Diadic Acid (react)Am SuffacEEEECCarboic Diadic Acid (react)AACarboic Diadic Acid (react)Am SuffacEEEEECCarboic Diadic	um CarbonateXGGGGGAum ChlorideCGCXCAum HydroxideXGGGGAum SulfateGGXGGAum SulfideXXGGGArEGGEEAt Sugar LiquorsXXXXXzaldehydeGGXGGXzene, BenzolEGGGALzenesulfonic AcidXXXGGA	A Caliche Liquors A Cane Sugar Liquors		-	E	
m CholonicCGCKCAACardial Super LanonsEm HydroxoloXGGGAACardial Acid ("Herref)"Gm SulfateCXGGGAACardial Acid ("Herref)"Gm SulfateCXXGGGAACardial Acid ("Herref)"GSignar LanonsCCXXCGGGGGGSignar LanonsCGGGGGGXXGGGSignar LanonsCGGGGGXXCGardial Cardial Cardi	num ChlorideCGCXCArium HydroxideXGGGGArium SulfateGGXGGArium SulfideXXGGGAerEGGEEAet Sugar LiquorsXXXXXXIllows 80-20 Hydraulic OilnzaldehydeGGXGGXnzene, BenzolEGGGAnzenesulfonic AcidX-XG-	A Cane Sugar Liquors	G			E
mindpoor minimpoor 	arium Hydroxide X G G G G G A arium Sulfate G G X G G G A arium Sulfate X X G G G A arium Sulfate X X G G G A arium Sulfate X X G G G A eter E G G E E A eter Sugar Liquors X X X X X X ellows 80-20 Hydraulic Oil - - - - - - enzene, Benzol E G G X G A - anzenesulfonic Acid X - X G G A		G		0	E
mutuationGGGGAAACatchela Add Pures 2019GSigar LaorsEGGGAAACatchela Add Pures 2019CSigar LaorsSigar Add PuresCXXXXCCatchela Add Pures 2019ESigar LaorsGGGXXGCCatchela Add Pures 2019ESigar LaorsEGGXGGXXCCatchela Add Pures 2019ESigar LaorsEGGGXGGXXCCatchela Add Pures 2019ESigar LaorsGGGGGGXXCCatchela Add Pures 2019ESigar LaorsGGGGGGXXCCatchela Add Pures 2019ESigar LaorsGGGGGGXXCCatchela Add Pures 2019E <t< td=""><td>arium Sulfate G G X X G G A arium Sulfide X X G G G A A arium Sulfide X X G G G A A beer E G G E E A ete Sugar Liquors X X X X X X ellows 80-20 Hydraulic Oil </td><td>A Carbolic Acid</td><td></td><td></td><td>G X</td><td></td></t<>	arium Sulfate G G X X G G A arium Sulfide X X G G G A A arium Sulfide X X G G G A A beer E G G E E A ete Sugar Liquors X X X X X X ellows 80-20 Hydraulic Oil	A Carbolic Acid			G X	
mutukaXXXGGGGAAACandom Katter Server AccessedGSugar LiquenXKGKGKCandom Security Server AccessedKSugar LiquenXKKCandom Security Server AccessedKCandom Security Server AccessedKSet D20 Application CiteKKKCandom Security Server AccessedKCandom Security Server AccessedKSet D20 Application CiteKKKKCandom ManadaKKSet D20 Application CiteKKKKCandom ManadaKKSet D20 Application CiteKKKKCandom ManadaKKSet D20 Application CiteKKKKCandom ManadaKKSet D40 Application CiteKKKKKCandom ManadaKSet D40 Application CiteKKKKKKCandom ManadaKSet D40 Application CiteKKKKKKCandom ManadaKKSet D40 Application CiteKKKKKKCandom ManadaKKSet D40 Application CiteKKKKKCandom ManadaKKSet D40 Application CiteKKKKCandom ManadaKKCandom ManadaKSet D40 Application CiteKK	rium Sulfide X X X G G G A er E G G G E A et Sugar Liquors X X X X X A llows 80-20 Hydraulic Oil nzaldehyde G G X G G X nzene, Benzol E G G G G A nzenesulfonic Acid X X S G G	A Carbalia Asid (Dhanal)				
ECCCCEFAACurbon DatadeESugar LuguonBBXGAXCurbon DatadeCurbon DatadeEat Bod DrightingEGAXGGXXCurbon DatadeCurbon DatadeEat Bod DrightingEAXGGXXCurbon DatadeEEat Bod DrightingEECurbon DatadeXCurbon DatadeKXXore AddeningEEECurbon DatadeXXXCurbon DatadeXore AddeningEEEECurbon DatadeXXXXXXof AddeningGGXXGGXXXCurbon DatadeXXof AddeningEEEEECurbon DatadeXX <td>er E G G E E A et Sugar Liquors X X X X X X X Ilows 80-20 Hydraulic Oil nzaldehyde G G X G G X nzene, Benzol E G G G G A nzenesulfonic Acid X X S G G</td> <td></td> <td></td> <td></td> <td>X</td> <td></td>	er E G G E E A et Sugar Liquors X X X X X X X Ilows 80-20 Hydraulic Oil nzaldehyde G G X G G X nzene, Benzol E G G G G A nzenesulfonic Acid X X S G G				X	
Sugar LogonsXXXXXXXCancon Dialoge - WeilEEEwe Bolzd Mydaulc OIGGXGGXCancon Dialoge - WeilEXare. BeauxiEGGGGAXCancon Dialoge - WeilEAare. BeauxiEGGGGAXCancon Dialoge - WeilEACare. BeauxiXXXGGAXCancon Dialoge - WeilECCare. Adapting Dialoge - WeilXXGGGCCC <t< td=""><td>et Sugar Liquors X X X X X X llows 80-20 Hydraulic Oil nzaldehyde G G X G G X nzene, Benzol E G G G G A nzenesulfonic Acid X X G G</td><td></td><td></td><td>X</td><td></td><td></td></t<>	et Sugar Liquors X X X X X X llows 80-20 Hydraulic Oil nzaldehyde G G X G G X nzene, Benzol E G G G G A nzenesulfonic Acid X X G G			X		
meshodnn <td>Ilows 80-20 Hydraulic Oil nzaldehyde G G X G G X nzene, Benzol E G G G A nzenesulfonic Acid X X G G</td> <td></td> <td></td> <td>X</td> <td></td> <td>G</td>	Ilows 80-20 Hydraulic Oil nzaldehyde G G X G G X nzene, Benzol E G G G A nzenesulfonic Acid X X G G			X		G
adetyde G X X X X X Carbon Novintie E X nen, Banch E G G G X Carbon Novintie X E nen, Banch X X G G X Carbon Teindhorde X E nen eneullonic Add G G G G X X Carbon Add E E och Add G G G G G X X Carbon Add E E och Add G G G G G X X Carbon Add F G och Add G E E E E E G Carbon Additione X G och Add F E E E E E Carbon Additione G G oth Add F E E E E E Carbon Additione G G oth Add F E E E E E Carbon Additione G G oth Add F E E E E E Carbon Additione G <td< td=""><td>nzeldehyde G G X G G X nzene, Benzol E G G G X G A nzenesulfonic Acid X X G G G A</td><td></td><td></td><td></td><td></td><td>G</td></td<>	nzeldehyde G G X G G X nzene, Benzol E G G G X G A nzenesulfonic Acid X X G G G A					G
enc. baronEGGGGGKXCathon AcadeEEence.utoric AcidGGXGGXXCCathon FainethorideXCol cAddGGKCCCathon CAddGGGGCol cAddGGKCCCathon CAddGGGGGol cAddEFFEECCathon CAddGGGol cAddFFFEEFGCathon CAddGGol cAddFFFEEFCCathon CAddGGol cAddFFFEFFCCathon CAddGGGof Cathon CathonFFFEFFCCathon CAddGGGof Cathon CathonFFFFFFCCathon CAddGGG <td< td=""><td>nzenesulfonic Acid X G G G G A C</td><td></td><td></td><td></td><td></td><td>F</td></td<>	nzenesulfonic Acid X G G G G A C					F
energy diric Add X X X G G X C Default G	nzenesulfonic Acid X X G					G
neEGGGGAXCartonic AcidEEGCcic AddrydeCCCCCausic SolanCC					C	
ck AdahnydeGGKKKCadaro Polanic Probanic					G	
cic AdachydeEEEEEEEECCaudic Potan/XXCXCXdAchold, Photo inhibidFEEEEXCaudic Potan/FKCAy BenzoaheFEEEEECCalcinove AdachineFEEE		X Carbonic Acid	E	G	G	
dEFFF <th< td=""><td>izoic Acid G G X G G X</td><td>X Castor Oil</td><td>G</td><td>G</td><td>G</td><td></td></th<>	izoic Acid G G X G G X	X Castor Oil	G	G	G	
yi Abdoxyi Abd	zoic Aldehyde E E	E Caustic Potash	Х	С	Х	
y Benzoate I I I E E E E Celosolva Celosolva <th< td=""><td>iol E E E E</td><td>X Caustic Soda</td><td>х</td><td>G</td><td>G</td><td></td></th<>	iol E E E E	X Caustic Soda	х	G	G	
Chabonate F F E	zyl Alcohol, Photo Inhibited E E E	E (see Sodium Hydroxide)				
basic F E E E E E E E E Calcor Calcord/Particle Budy1 E E E E E E E E E E E E E Chioma-Water C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>	zyl Benzoate E E E	Cellosolves	G	G	G	
Libox Image of an analysis Image of an amp of	nuth Carbonate E E E	E Cellosolve Acetate			E	
Suitate Image E <th< td=""><td>nastic E E E E</td><td>Cellosolve Butyl</td><td></td><td></td><td>E</td><td></td></th<>	nastic E E E E	Cellosolve Butyl			E	
Suitate Image E <th< td=""><td>k Liquor E E E</td><td>E China Wood Oil</td><td>Е</td><td>Е</td><td>E</td><td></td></th<>	k Liquor E E E	E China Wood Oil	Е	Е	E	
Fundae Gas E E E E E E E E E E F A Chioonandi Acid Solution F G G X h X G G E E E C Chioonandi Acid Solution E E E aux Muture - - E E E E Chioonandi Acid Solution C C Z Fluid (Pentheum Based) - E E E E E E C Chioopanyten Oxde - F E Fluid (Sentheut Based) - E E E E E E C A A Chioopanyten Oxde - F E Fluid (Sentheut Based) - E E E E A A Chioopanyten Oxde C X A Acid X X C C C X A Chioopanyten Oxde X X C Acid X X C C X A Chioopanyten Oxde X X X Acid S X X C Chioopanyten Oxde X </td <td></td> <td></td> <td>С</td> <td>С</td> <td>G</td> <td></td>			С	С	G	
h X C X C X X A A Choroscetc Acid Solution u G X 25% active Chlorine X G G E E E X A Choroscetc Acid Solution E						
2.5% active Chlorine) X G G E E E E Chlorobenzene E E E E Chlorobenzene Chlorobenzene E E E E E E E Chlorobenzene Chlorobenzene Chlorobenzene C <thc< th=""> C <thc< th=""></thc<></thc<>				G	x	
c X G G G E E X A Chorobronomethane F E E aux Mixture - - E E E C C X A Chorobrom C C C X A Choroprophene Oxide - E			F			
sax Mixture I I E E E E F I C C C X Add E E X X C C X Ad Chloroperlane I E </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			-			
Add E X X C C X A Chioropentane F F F F E E E E E E F Chioropentane C X C Chioropentane F E <td></td> <td></td> <td>c</td> <td></td> <td></td> <td></td>			c			
EP Loid (Phetroleum Based) F. E<			C	C	^	
PLUId (Synthetic Based) E E E E E C Chronsulfonic Acid C X G Aadi X X X C C X A Chronsulfonic Acid C X E ice Acid X X C C C X A Chronsulfonic Acid C X C X C X C X C X C X C X<					_	
AcidEXXCCXAChlorotheneIEic AcidXXCCCXAChlorotheneEEEEineIEEECXXChlorotheneEEEEineIne LiquidCCXXXChronic Acid (6%)GXXXochloromelhaneIEEEEEECChronic Acid (6%)GXXXochloromelhaneGGGGGCXXXChronic Acid (6%)FXXXochloromelhaneGGGGGXXChronic Acid (6%)FXXXochloromelhaneGGGGGXXColal TarColal TarFXXochloromelhaneGGGGXXColal TarColal TarFFXXoheGGGGXXColal TarColal TarFF<						
ic AddXXCCCCXAChlorotolueneEEEEineEEEEEEEEEChlorotoluonXCXine LaqudGGCCXXXXChlorotoluonChlorotoluonXCXine LaqudGEEEEEEEXChronium TroxideXXXXer OlEEEEEEEColarCutic Add (50%)GXXXal or OlEEEEEEXColar TroxideFXXal or OlEEEEEEColar TroxideFXXXal or OlEEEEEColar TroxideFXXXal or OlEEEEEColar TroxideFXXXal or OlEEEEEColar TroxideColar TroxideFXXal or OlEEEEECColar TroxideColar TroxideFXXal or OlEEEEEEColar TroxideColar TroxideKXXal or OlEEEEECColar TroxideColar TroxideK<			C		G	
ine $\ \ \ \ \ \ \ \ \ \ \ \ \ $						
ine Liquid G G C C X X X X Chromic Acid (50%) G X X X cochioromethane E E E E E E E E Chromic Acid (50%) G X X X er Oil E E E E E E Calar Carl F X X isen, Butylene G G G G G G X X Calar Carl F X X isen, Butylene G G G G G X X X Coal Tar E Cachet Carbitol E E E E E Cachet Carbitol E E E E E E E E E Cachet Carbitol E E <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
chronomethane F E Chromium Troolde X X X ar Ol G <		X Clorox (5.5% bleach)			Х	
er OiEEEEEEEEECCltic AcidFXXtiene, ButyleneGGGGGGXXCoal TarEE		X Chromic Acid (50%)	G	Х	Х	
diene, Butylene G G G G G G G X X X Coal Tar E E E E ral G G G E G G G X X Coal Tar Coal Tar E E E E roll (Jse FDA Hose) E G G G G G A X Cocl Liver Oil E E E E Acetate E E E E E E Cable Oven Gas G F G Acetate E E E E E E Copper Arsenate X X X Carbitol E E E E E E Copper Arsenate X X X Stearate E E E E E E Copper Arsenate X X X Stearate E E E E E E E Copper Strate X X X Stearate G G X X G A Compor Nirate E Z E Aum	pmochloromethane E E E E	X Chromium Trioxide	х	Х	х	
hatIEIIIIIICobalt Nickel Plating SolutionIIEEreGGGGGXXCocoa ButterEEEEEr Oil (Use FDA Hose)EE <td< td=""><td>ker Oil E E E E E</td><td>Citric Acid</td><td>F</td><td>Х</td><td>Х</td><td></td></td<>	ker Oil E E E E E	Citric Acid	F	Х	Х	
neGGEGGGXXXCocoa ButterIIEEEr Oil (Use FDA Hose)EEEEEEEEEEEEEEEEEEEEEEEEEEECod Liver OilEEEEEEEECod Liver OilEEEEEECod Liver OilEEEEEECod Liver OilEEEEEEEEEECod Liver OilEEEEEEEECod Liver OilEEEEEECod Liver OilEEEEEECod Liver OilEEEEEECod Liver OilEEEEECod Liver OilEEEEEECod Liver OilEEEECod Liver OilEEEECod Liver OilEEEEECod Liver OilEEEEECod Liver OilEECod Liver OilEEEEEECod Liver OilEECod Liver OilEEECod Liver OilEECod Liver OilEECod Liver OilCod Liver OilCod Liver OilCod Liver OilC	adiene, Butylene G G G G X	X Coal Tar	E	Е	E	
r Oil (Use FDA Hose)EEEEEEEEEEEEEEAcetateEGGGGGAXCoke Oven GasGFGAlcoholEEEEEEECopper ArsenateCXXXCarbitolEEEEEECopper CyanideXXXXEtherEEEEECopper SulfateXXXXStearateEEEEECorpor SulfateXXXXAtumXXXGAACorn OilEEEEAtumXXXGAACorn OilEEEEEamineEEEEEXCorn OilEEEEEatumXXXXGAACorn OilEE </td <td>anal E</td> <td>Cobalt Nickel Plating Solution</td> <td></td> <td></td> <td></td> <td></td>	anal E	Cobalt Nickel Plating Solution				
AcetateEGGGGAXCoke Oven GasGFGAccholEEEEEECopper Arsenate \Box Σ ECarbitolEEEEEECopper ChlorideXXXEtherEEEEECopper ChlorideXXXXStearateEEEEECopper SulfateXXXXamineEEEEEXCorn OilEEEEAlumXXXGAACorn SyrupEEEEand AcetateEEEEECressolEEEEamineKXXXGAACorn SyrupEEEAlumXXXGECCressolEEEEEamisulfateXCXXGAACrude OilEE	tane G G E G G X	X Cocoa Butter			E	
AchoholEEEEEEEECopper Arsenate $\ \ \ \ \ \ \ \ \ \ \ \ \ $	tter Oil (Use FDA Hose) E E E E E	Cod Liver Oil	E	Е	Е	
AchoholEEEEEEEECopper Arsenate $\ \ \ \ \ \ \ \ \ \ \ \ \ $		X Coke Oven Gas	G	F	G	
CarbitolEEEEEEEEEECoper ChlorideXXXEtherEEEEEEECoper ChlorideXXCMercaptanEEEEEECoper ChlorideXXXXStearateEEEEEECoper SulfateXXXXamineEEEEEXCom OilEEEEAlumXXXXGAACornosotoEEEEAlumXXXXGAACornosotoEEEEAlumXXXXGFCorosotoEXGGam AcetateEEEEECCorosotoEEEEum BisulfateXGXXGAACrude OilEEEEum BisulfateXGXXXXXCorolic AcidEEEEum BisulfateXGXXXXXCorolic AcidEEEum BisulfateXGXXXXXCorolic AcidGGGGGGGGGGG						
EtherEEEEEEEEECopper CyanideXXXXMercaptanEEEEEEECopper NitrateCopper NitrateXXXXStearateEEEEEEEECopper SulfateXXXXamineEEEEEECorn OilEEEEic AcidGGXXXGFCorn OilEEEEAlumXXXXGGFCorn OilEEEEAlumXXXXGFCorn OilEEEEEAlumXXXXGFCorn OilEEEEEand AcetateEEEEECresoleEXGGum BisulfateXCCCGXXCrude OilEEEum BisulfateXGXXXXCrude WaxEEEum BisulfateXGXXXXCrude WaxEEEum BisulfateXGXXXXCrude WaxEEEum ChorateXGGAA			x	х	х	
MercaptanIIIEEEIICoper NitrateIXXStearateEEEEEEECoper SulfateXXXXumineEEEEEXCorn OilEEEEc AcidGGXXGGAACorn OyinEEEc AcidGGXXXGECotonseed OilEEEEAlumXXXXGEECotonseed OilEEEEand AcetateEEEEECresolEXGGum BisulfateXCCCGAACrotonic AcidEEEum BisulfateXGXXXXCresolEEEEum BisulfateXGXXXXCrude OilEEEEum BisulfateXGXXXXCrude OilEEEEum CatonateXGXXXXXCrude WaxEEEum Chlorate-GGCCAACrudic AreenateXXXum Chlorate-GGCCAA </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
StearateEEEEEEEEEECoper SulfateXXXXamineEEE<						
amineEE <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td>			×			
ic AcidGGXGGAACCorn SyrupEEEEAlumXXXXXGFECottonseed OilEEEEEEEEEEEEEEEEEGCreosoteEXGG<						
AlumXXXXXGECottonsed OilEEEEne LiquorGEEEEECreosoteEXGum AcetateEEEEEECreosoteEXGum BisulfateXCXXGXACrotonic AcidEEum BisulfateXCCCGAACrude OilEEEum BisulfateXXXCGXACrude OilEEEEum BisulfateXXXXXACrude OilEEEEum BromideXGGXXXXCrude WaxEEEum ChlorateXGGEGAACrysylic AcidGGGum ChlorateGEEECutring Oil (Mineral Oil Base)EEEum Hydrosulfide-XGGGAACutting Oil, Sulfur BaseEEEum HydrosulfideXXXGAACutring Oil, Water SolubleEEEum HydrosulfideXXXGAACutring Oil, Water SolubleEEEum HydrosulfideXXXXA <td< td=""><td></td><td></td><td></td><td>E</td><td></td><td></td></td<>				E		
Ine LiquorGIEEEEEFICreosoleEXGum AcetateEEEEEEEECreosolEEGum BisulfateXCXXGXACrotonic AcidEEEum BisulfateXCCCGAACrude OilEEEum BisulfateXXXCGXACrude OilEEEum BisulfateXXXCGXACrude WaxEEEum BromideXGGEGAACryosite AcidGGGGum ChlorateGGCCAACupric ArsenateXXXXum Hydrogen SulfiteEEECutting Oil, Sulfur BaseEEEum HydrosulfideXGGGAACutting Oil, Water SolubleEEEum HydrosulfideXXXGAACutting Oil, Water SolubleEEEum HydrosulfideXXXGXACutting Oil, Water SolubleEEEum HydrosulfideXXXGXACutting Oil, CopperXXX				_		
ActatateEEEEEEEECresolEEGum BisulfateXCXXGXACrotonic AcidEEum BisulfateCCCCGAACrude OilEEEum BisulfateXXXCGXACrude OilEEEum BisulfateXXXCGXACrude WaxEEEum BromideXGGZXXXCryoliteEEEum CarbonateXGGEGAACryolite AcidGGGGum ChlorateGEEECupric ArsenateXXXXum Chlorate-EEECutting Oil (Mineral Oil Base)EEEum HydrosulfideGGGAACutting Oil, Sulfur BaseEEum HydrosulfideXGGGAACutting Oil, Water SolubleEEEum HydroxideXXXGXACyanide, CopperXX						
um BisulfateXCXXGXACCrotonic AcidEEum BisulfideCCCCGAACrude OilEEEum BisulfiteXXXCGXACrude OilEEEum BisulfiteXXXCGXACrude WaxEEEum BromideXGGXXXXCryoliteEEEum CarbonateXGGEGAACryolite AcidGGGGum ChlorateGEGAACupric ArsenateXXXum Hydrogen Sulfite-EEECutting Oil (Mineral Oil Base)EEEum HydrosulfideXGGGGAACutting Oil, Sulfur BaseEEum HydroxideXXXGAACutting Oil, Water SolubleEEum HydroxideXXXGAACyanide, CopperXX				х		
um BisulfideCCCCCGAAACrude OilEEEEum BisulfiteXXXCGXACrude WaxEEEum BromideXGXXXXXCrude WaxEEEum BromideXGGXXXXCrude WaxEEEum CarbonateXGGEGAACrysylic AcidGGGum ChlorateGEGAACupric ArsenateXXXum ChlorateEECutting Oil (Mineral Oil Base)-EEum Hydrosulfide-XGGGAACutting Oil, Sulfur BaseEEum HydroxideXGGGAACutting Oil, Water SolubleEEum HydroxideXXXGXACyanide, CopperXX			E			
Image: Building Buildi						
um BromideXGXXXXXXCryoliteEEum CarbonateXGGEGAACryoliteGGGGum ChlorateGGEECupric Arsenate-Eum ChlorateGGCCAACupric NitrateXXum Hydrogen SulfiteEEECutting Oil (Mineral Oil Base)EEEum Hydrosulfide-XGGGAACutting Oil, Sulfur BaseEEum HydroxideXGGGAACutting Oil, Water SolubleEEum HydroxideXXXGXACyanide, CopperXX	cium Bisulfide C C C G A	A Crude Oil	E	Е	E	
um Carbonate X G G E G A A Crystic Acid G <td>um Bisulfite X X X C G X</td> <td>A Crude Wax</td> <td></td> <td>Е</td> <td>E</td> <td></td>	um Bisulfite X X X C G X	A Crude Wax		Е	E	
um Chlorate C G E E Cupic Arsenate E E um Chloride C G G C C A A Cupic Arsenate X X um Hydrogen Sulfite E E E E Cutting Oil (Mineral Oil Base) E E E um Hydrosulfide X G G E E Cutting Oil, Sulfur Base E E E um Hydrosulfide X G G A A Cutting Oil, Water Soluble E E E um Hydroxide X X X A Cyanide, Copper X X	ium Bromide X G X X X X	X Cryolite		Е	E	
um Chloride C G G C C A A Cupric Nitrate X X um Hydrogen Sulfite - - E E E E Cutting Oil (Mineral Oil Base) E E E um Hydrosulfide X X G G E E E Cutting Oil (Mineral Oil Base) E E E um Hydroxidf X G G G A A Cutting Oil, Sulfur Base E E E um Hydroxide X X X G A A Cutting Oil, Water Soluble E E um Hypochlorite X X X G X A Cyanide, Copper X	cium Carbonate X G G E G A	A Crysylic Acid	G	G	G	
um Hydrogen Sulfite Image: Constraint of the sector of the s	sium Chlorate G E	E Cupric Arsenate			E	
um Hydrogen Sulfite L E E E E Cutting Oil (Mineral Oil Base) E E E um Hydrosulfide X G G E E E Cutting Oil (Mineral Oil Base) E E E um Hydrosulfide X G G G A A Cutting Oil, Sulfur Base E E E um Hydroxide X X G G A A Cutting Oil, Water Soluble E E E um Hypochlorite X X X G X A Cyanide, Copper X	ium Chloride C G G C C A	A Cupric Nitrate		х	х	
Im Hydrosulfide X X G E E Cutting Oil, Sulfur Base E E Im Hydroxide X G G G A A Cutting Oil, Sulfur Base E E E Im Hydroxide X G G G A A Cutting Oil, Water Soluble E E E Im Hypochlorite X X X G X A Cyanide, Copper X						
um Hydroxide X G G G G G G A A Cutting Oil, Water Soluble E E um Hypochlorite X X X G X A Cutting Oil, Water Soluble E E						
um Hypochlorite X X X X G X A Cyanide, Copper X						
		•				
um metasinicate E E E E E E Cyanide, Mercuric X				×		
		E Cyanide, Mercuric				1

METAL: E - Excellent • G - Good • F - Fair • X - Not Recommended • C - Contact Factory NON-METAL: A - Acceptable • X - Not Recommended • C - Contact Factory

182

COUPLING MATERIAL CORROSION RESISTANCE

Ratings given are based at +70°F (+21°C).

pach. data X Z <thz< th=""> Z <thz< th=""> Condered Z</thz<></thz<>	MATERIAL	Aluminum	Brass	Carbon Steel	Stainless Steel, 304	Stainless Steel, 316	Nylon	Poly- Propylene	MATERIAL	Aluminum	Brass	Carbon Steel	Stainless Steel, 304	Stainless Steel, 316	Nylon	Poly- Propylene
space space <t< td=""><td>Cyanide, Sodium</td><td>х</td><td>x</td><td></td><td></td><td></td><td></td><td>- Prene</td><td>Ethyl Acetate</td><td>С</td><td>с</td><td></td><td></td><td></td><td>A</td><td></td></t<>	Cyanide, Sodium	х	x					- Prene	Ethyl Acetate	С	с				A	
constrained s stand	Cyclohexane						ا ۲	t x							t 🐪	
sympone S S S S </td <td></td> <td>Ĭ</td> <td>ຸ້</td> <td> </td> <td>1 [×] 1</td> <td>(Ŭ)</td> <td> </td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>i I</td> <td></td>		Ĭ	ຸ້		1 [×] 1	(Ŭ)			*						i I	
mme r	Cyclohexanol Cyclohexanone		ļi)	ا _ ا	ا _ہ ا	I Ì								t I	E.
with a bit of the set of the se	Cyclohexanone		ļ	1.1			I Ì	X			l ^E I				t I	•
edsorp field E E E E F F F <t< td=""><td>Cymene</td><td>E</td><td></td><td> ^E </td><td>E</td><td>I E</td><td>(I</td><td>ı </td><td></td><td></td><td> 1</td><td> 1</td><td></td><td></td><td>r I</td><td>• </td></t<>	Cymene	E		^E	E	I E	(I	ı			1	1			r I	•
number of the second	Decalin	į l		1	į 1	i l	(I								А	
number of the second	Deicing Fluid						(I	ĻΕ		EI	E		Е	Е	i I	Е
ether g G G G G A <td>Denatured Alcohol</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(I</td> <td>ı </td> <td></td> <td> 1</td> <td> 1</td> <td></td> <td>i j</td> <td>i l</td> <td>i I</td> <td>· </td>	Denatured Alcohol						(I	ı		1	1		i j	i l	i I	·
non-serie N N N N N Non-serie Non-serie N Non-serie N <	Detergents									1	I E I		E I	E I	i I	·
owish n <td>Developing Solutions</td> <td>۱ ^۲ ۱</td> <td>ı َ ا</td> <td>1 1</td> <td></td> <td></td> <td>1 1</td> <td>ı 1</td> <td></td> <td>()</td> <td></td> <td>1 1</td> <td></td> <td></td> <td>i I</td> <td>, </td>	Developing Solutions	۱ ^۲ ۱	ı َ ا	1 1			1 1	ı 1		()		1 1			i I	,
consor C C C C C A </td <td></td> <td>ı İ</td> <td>ļ</td> <td>1 1</td> <td></td> <td></td> <td>(I</td> <td>ı 1</td> <td></td> <td> ₌ </td> <td></td> <td> </td> <td></td> <td></td> <td>i I</td> <td>, </td>		ı İ	ļ	1 1			(I	ı 1		₌					i I	,
character character <td>Dextrin</td> <td></td> <td></td> <td> _ </td> <td></td> <td></td> <td>۱ _ ۱</td> <td>i l</td> <td></td> <td> ^E </td> <td></td> <td> = </td> <td></td> <td></td> <td>i I</td> <td>, </td>	Dextrin			_			۱ _ ۱	i l		^E		=			i I	,
score c C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>	Dextrose									()		۱ I			i I	,
score c C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>	Dextrose	G								()					i I	,
accor b C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<>	Diacetone	į l	Е			Е	(I	E	Ethylcellulose	1		E			i I	,
amount in in< in in <	Diacetone Alcohol	E					(I			E I					А	А
andor bit bit<	Diacetone Alconol Diammonium Phosphate		ļ -				(I									
back back E<		*	ļ	×	l ,	-	(I									
bioly Advances F	Diazinon	ا _ I			1 <u> </u>	i ji	(I	G								
bachesone	Dibenzyl Ether						(I	ı								
bachesone	Dibutyl Phthalate	E		E	I E I	Ε	(I	G								
circulation circulation <thcirculation< th=""> <thcirculation< th=""></thcirculation<></thcirculation<>	Dibutylsebacate	į l		1	į 1	i l	(I	ı				c l			x	
chroninger r <th< td=""><td>Dichlorobenzene (ortho)</td><td>ı İ</td><td></td><td>1 1</td><td>l _E l</td><td>i _E İ</td><td>(I</td><td>ı 1</td><td></td><td>()</td><td>(I</td><td>۱ I</td><td></td><td></td><td>i I</td><td></td></th<>	Dichlorobenzene (ortho)	ı İ		1 1	l _E l	i _E İ	(I	ı 1		()	(I	۱ I			i I	
choweryweineEEE <the< th="">EEEEE</the<>	Dichlorobenzene (ortho) Dichlorobenzene (para)	ı İ		1 1			(I	ı 1		ر م	l ^e l	∣ _× ∣			r _x I	
cristnowneeE.		ı İ		1 1	۲ ⁻ ۱	- -	(I	ιjl							∟^	
exact signal and	Dichloroethylene	ı İ		1 1	1 <u>1</u>	i _ 1	(I	i × I							i I	E
enhoremannelEisEEEEEEEEFPublic AddECCCCCCCNAAAethor FactorEEEEEEEFPublic AddEEE <the< th="">EE<the< th="">EEE</the<></the<>	Dichloromethane	ı İ					(I	ı 1		I E I	I E I	E			i I	,
enhoremannelEisEEEEEEEEFPublic AddECCCCCCCNAAAethor FactorEEEEEEEFPublic AddEEE <the< th="">EE<the< th="">EEE</the<></the<>	Diesel Fuels		E	G			A	ı x İ	Fixing Solution (Photo)	()	(I	۱ I			i I	Е
eherodencyEsESEEEEFFF	Diethanolamine						(I	ı 1		x	с	El			тхI	
endFerrFerrFerrFerrFerrFormaldely (50%)CGKFerrKKK <td>Diethanolamine - 20%</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(I</td> <td>ı </td> <td></td> <td></td> <td>1</td> <td>1 1</td> <td>(¹)</td> <td>(¹ 1</td> <td>t 1</td> <td></td>	Diethanolamine - 20%						(I	ı			1	1 1	(¹)	(¹ 1	t 1	
ethy E F							(I	ı _E İ				∣ _v I	ا ۽ ا	ı _E İ	ı, I	
endEndEndEndFeed 1Feed 1Feed 1Feed 1GGSNGNNNstabilizationCCCCCCCCCNN	Diethyl Ether Diethyl Phthalate	-		G I			(I	ı ⊑					1			
ethylamicGKKGKK	Diethyl Phthalate	ı İ		1 1			(I	ı 1								
ethy ethy ethy intoGKGKGKKKKKKKethy intoEEEEEFFF <t< td=""><td>Diethyl Sebacate</td><td>ı İ</td><td></td><td>1 1</td><td></td><td></td><td>(I</td><td>ı 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Diethyl Sebacate	ı İ		1 1			(I	ı 1								
ethylene DioxideEEEEEEEEFProductionsGGGXGG <td>Diethylamine</td> <td>G</td> <td>С</td> <td>X I</td> <td>G</td> <td>G</td> <td>X</td> <td>L A</td> <td>Freon 12</td> <td>G</td> <td>G</td> <td>X</td> <td>G</td> <td>G</td> <td>x</td> <td>x</td>	Diethylamine	G	С	X I	G	G	X	L A	Freon 12	G	G	X	G	G	x	x
withy incomentsEEEEEFF <td>Diethylene Dioxide</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Diethylene Dioxide						1									
withywee oflycalEEEEEEEEEEEEEEEEFFF <td>Diethylene ether</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Diethylene ether						1									
hydrogenyle EhlerEEEEEEEEEEEEFFF </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							1 1									
mb mb E	Diethylene Glycol						(I			G	G	G			А	х
isobuly Mathem Image E	Dihydroxyethyl Ether	E					(I			()	(I	۱ I		_	i I	,
isebulyene Fe	Diisobutyl Ketone	į l		[E]			(I	I E							i I	·
iteoropy Retoring Fe	Diisobutylene	ı İ		1 1			(I	ı 1							A	x
isoponylidene Acetone E	Diisopropyl Ketone	ı İ		1 1			(I	ı 1							t 1	·
mathy Andine E F F F F F F F E E E E E E E E E E E E E E E F F F F F F F F E <t< td=""><td></td><td>ı İ</td><td></td><td> ₌ </td><td></td><td>_</td><td>(I</td><td>ı 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>i I</td><td>· </td></t<>		ı İ		₌		_	(I	ı 1							i I	·
immetry Ether E <	Diisopropylidene Acetone	ı İ		- 1	, [⊑]	I - I	(I	ı 1							i I	,
immetry Formanide Immetry Formanide	Dimethyl Aniline	ı İ		1 1	į 1	i l	(I	ı 1			I E I		I E I	I E I	i I	,
immethy Formanide I E E E E F P	Dimethyl Ether	E	E				(I	ı 1			(I		i l	i l	i I	·
immetry PhyhalateFFF <td>Dimethyl Formamide</td> <td>ı İ</td> <td>ļ</td> <td></td> <td></td> <td></td> <td>(I</td> <td>ιεl</td> <td></td> <td></td> <td>(I</td> <td>E</td> <td>i l</td> <td>i l</td> <td>i I</td> <td>· </td>	Dimethyl Formamide	ı İ	ļ				(I	ιεl			(I	E	i l	i l	i I	·
immetry/carbind E G E E E G E E G E F G	Dimethyl Phthalate	i l	ΙE	[]	(I	(j	1 1	ι		1 1	1 1		ι _ε Ι	L _E 1	t I	Е
immetry/iformanideIII </td <td>Dimethylcarbinol</td> <td>ا _F ا</td> <td></td> <td>F I</td> <td>l_Fl</td> <td>(_F j</td> <td>1 1</td> <td>(_F </td> <td></td> <td>F I</td> <td>l_E I</td> <td></td> <td></td> <td></td> <td>t I</td> <td></td>	Dimethylcarbinol	ا _F ا		F I	l _F l	(_F j	1 1	(_F		F I	l _E I				t I	
intrivited icodyEEEEEEEEEEFF		۱ ^۲ ۱					1 1									
icody PhthalateEEEEEEEGEEGEEGEEE <td>Dimethylformamide</td> <td>i _ I</td> <td>ļ</td> <td></td> <td></td> <td></td> <td> 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Dimethylformamide	i _ I	ļ				1									
iovaneEEEEEEEEGelationGGGKGGGAAioxolaneEEEEEEEEEGlucoseGG <td>Dimethylketone</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>А</td> <td></td>	Dimethylketone						1								А	
iovaneEEEEEEEEGelationGGGKGGGAAioxolaneEEEEEEEEEGlucoseGG <td>Dioctyl Phthalate</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>i I</td> <td></td>	Dioctyl Phthalate						(I								i I	
NovalaneEE<	Dioxane						(I								А	
ippenteneEE	Dioxolane						(I	ı 1								
No rise of this constraintEEEEEEEEEGueGGGGCGCGCAAisodium PhosphateCCECECECEAAGlueGlueEEE<	Dipentene						(I	ı 1							1 1	
isodium PhosphateCCECECEAAGlycerineEEEGEEEEAAAMF (Dimethyformamide) $$ EEEGEE<							(I	ı 1							۱ _ I	
MF (Dimensional problem of the second problem of	Dirco Oils						(I	ı 1								
owtherm AEEEEEEEEEEEEFGlycolsGGG <td>Disodium Phosphate</td> <td>С</td> <td>С</td> <td></td> <td></td> <td></td> <td>A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>А</td> <td>A</td>	Disodium Phosphate	С	С				A								А	A
owtherm AEEEEEEEEEEEEFGlycolsGGG <td>DMF (Dimethylfomamide)</td> <td>i I</td> <td>ļ i</td> <td>E</td> <td>E</td> <td>I E Ì</td> <td>1 1</td> <td>E</td> <td>Glycerol</td> <td>EI</td> <td> E </td> <td>G</td> <td>I E I</td> <td>[E]</td> <td>t I</td> <td>· </td>	DMF (Dimethylfomamide)	i I	ļ i	E	E	I E Ì	1 1	E	Glycerol	EI	E	G	I E I	[E]	t I	·
owtherm SR-1EEGEEII <t< td=""><td>Dowtherm A</td><td>I E Ì</td><td>I E I</td><td></td><td></td><td></td><td>1 1</td><td>ι </td><td></td><td></td><td></td><td></td><td></td><td></td><td>A</td><td>А</td></t<>	Dowtherm A	I E Ì	I E I				1 1	ι							A	А
urr OlisEEEEEEEEFFFEEE<	Dowtherm SR-1						(I	ι _Ε Ι							i 1	· ·
hylene ChlorideCCGGCAXGreen LiquorCCGGCC <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(I</td> <td>ι - I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>i I</td> <td>, </td>							(I	ι - I						_	i I	,
Any hylene DichlorideCGGGAXGreen Suffate LiquorIEEEEEEEhylene GlycolEGGGGGAXHeptaneGGGGGGGAXhylene OxideEEXGGGGXXHexalehydeEEEEEEEEAXpichtrohydrin-EEEEEEEEEEEAXssential OlisEEE <t< td=""><td>Duro Oils</td><td></td><td></td><td></td><td></td><td></td><td>(_)</td><td>ι<u>.</u> Ι</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ιjl</td><td>• _ </td></t<>	Duro Oils						(_)	ι <u>.</u> Ι							ιjl	• _
Nylene GlycolEGGGGGAXHeptaneGGGGGGGAXhylene OxideEXGGGGGGGGGGGGGGGGGAXhylene OxideEEXGGGGGGGGGGGGGGGGGGGGGAXnamelsLEELLLLHexaneGGGGGGEEEAXpichtrohydrinLEEEEEEEEEEEEAXsasential OlisEE <th< td=""><td>Ehylene Chloride</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>l _C I</td><td>l _c l</td><td></td><td></td><td></td><td>С</td><td>A</td></th<>	Ehylene Chloride									l _C I	l _c l				С	A
Nylene GlycolEGGGGGAXHeptaneGGGGGGGAXhylene OxideEXGGGGGGGGGGGGGGGGGAXhylene OxideEEXGGGGGGGGGGGGGGGGGGGGGAXnamelsLEELLLLHexaneGGGGGGEEEAXpichtrohydrinLEEEEEEEEEEEEAXsasential OlisEE <th< td=""><td>Ehylene Dichloride</td><td></td><td></td><td></td><td></td><td></td><td>A</td><td></td><td></td><td>()</td><td>(I</td><td></td><td></td><td></td><td>i I</td><td>, </td></th<>	Ehylene Dichloride						A			()	(I				i I	,
hylene OxideEXGGGGXXHexaldehydeEEEEEEEEnamels L E L <td>Ehylene Glycol</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td>G</td> <td></td> <td></td> <td></td> <td>A</td> <td>×</td>	Ehylene Glycol									G	G				A	×
AnamelsEEIIIHexaneGGGGGEEEAXpich/rohydrinIEEEEEEEHexanolEGGEEEEEssential OilsEEEEEEEEHexeneEEEEEEEthanolEGGEEEEHexyl AlcoholEGEEEEEthanolamineEEEEEAXHoughto-Safe 1055, 1110, 1115, 1120, 1130EEEEEEE	Enylene Giycol Ehylene Oxide														t 1	· ·
pichlrohydrinIIEIIFFHexanolEGEEEEssential OlisEEE		C		1 6 1	l , , , ,	U	^	i ^ [ĻÌ	
Seenial Oils E <t< td=""><td>Enamels</td><td>l I</td><td>I E I</td><td>1 1</td><td>į 1</td><td>i İ</td><td>l I</td><td>ı 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Α</td><td>x</td></t<>	Enamels	l I	I E I	1 1	į 1	i İ	l I	ı 1							Α	x
ssential Oils E <	Epichlrohydrin	ı İ	ļ		į 1	i l	(I	I E		[E]					i I	·
hanol E G E E E E Hexyl Alcohol E G E E E E hanolamine E <td< td=""><td>Essential Oils</td><td>Е</td><td>E</td><td></td><td>El</td><td>ι_ΕΙ</td><td>(I</td><td>ı 1</td><td></td><td>()</td><td></td><td></td><td></td><td></td><td>i I</td><td>· </td></td<>	Essential Oils	Е	E		El	ι _Ε Ι	(I	ı 1		()					i I	·
thanolamine E <th< td=""><td>Ethanol</td><td></td><td></td><td></td><td></td><td></td><td>(I</td><td>ι_εΙ</td><td></td><td>E I</td><td></td><td></td><td></td><td></td><td>i I</td><td>· </td></th<>	Ethanol						(I	ι _ε Ι		E I					i I	·
thers G G G E E A X Houghto-Safe 1055, 1110, 1115, 1120, 1130 E E E E E E							(I	ι ⁻ Ι		1 1					i I	·
	Ethanolamine	l j l					(_ I	ι _ Ι							i I	,
mers E E E E E G Houghto-Safe 271, 416, 520, & 616, 620 E E E E E	Ethers						A								i I	,
/ETAL: E - Excellent • G - Good • F - Fair • X - Not Becommended • C - Contact Factory	Ethers						ا					E	<u> </u>	<u> </u>	<u> </u>	,

METAL: E - Excellent • G - Good • F - Fair • X - Not Recommended • C - Contact Factory NON-METAL: A - Acceptable • X - Not Recommended • C - Contact Factory

COUPLING MATERIAL CORROSION RESISTANCE

Ratings given are based at +70°F (+21°C).

MATERIAL	Aluminum	Brass	Carbon	Stainless	Stainless	Nylon	Poly-	MATERIAL	Aluminum	Brass	Carbon	Stainless	Stainless	Nylon	Poly- Propyle
			Steel	Steel, 304	Steel, 316	-	Propylene				Steel	Steel, 304	Steel, 316		Propy
Houghto-Safe 5048	E	E	E	E	E			Lime Sulfur Solution	х	х	G	E	E		
Houghto-Safe 625, 640 & 525 under 100°F	E	Е	E	E	E			Lime Sulphur	Х	Х	Х	G	G	Х	A
HPO (Sodium Thiosulfate)	G	Х	Х	E	E			Lime, Chlorinated			х	G	E		
Hy-Chock Oil			E	E	E			Limonene	E	E	E	E	E		
Hydrafluid 760	E	E	E	E	E			Lindane				E	E		
Hydrafluid AZR&O, A, B, AA, C	E		E	E	E			Linseed Oil	G	G	G	G	G	Α	1
Hydrasol A	E		E	E	E			Liquid Soap	E	Е	E	E	E		
Hydraulic Fluid (Phosphate Ester Base)			Е	E	E			Lonoleic Acid	G	х	x	G	G	х	1
Hydraulic Fluid (Polyalphaolifin)	Е	Е	E	E	Е			Lubricants (oil)	G	Е	G	G	G	А	3
Hydraulic Fluid (Std. Petroleum Oils)	Е	Е	Е	E	Е			Machine Oil Under 135°F	Е	Е	Е	Е	Е		
Hydraulic Fluid (Water Glycol Based)	Е	Е	Е	Е	Е			Magnesium Chloride	х	х	С	с	с	х	,
Hydraulic Fluid HF-18, HF-20	E	E	E	E	E			Magnesium Hydroxide	G	G	G	E	E	×	
												_		×	
Hydraulic Fluid HF-31	E	E	E	E	E			Magnesium Nitrate	G	G	G	G	G	X	
Hydrobromic Acid - 20%	х	Х	Х	Х	х	х	A	Magnesium Oxide	С	С	С	С	С	X	(
Hydrobromic Acid - 50%	х	Х	Х	Х	Х	Х	А	Magnesium Sulfate	G	С	С	G	G	х	,
Hydrochloric Acid - 20%	х	Х	х	Х	х	х	A	Magnesium Carbonate	G	С	С	G	G	Х	1
Hydrochloric Acid - 38%	х	Х	Х	Х	Х	Х	Α	Malathion		Е	E	E	E		
Hydrocyanic Acid	G	х	G	G	G	х	А	Maleic Acid	С	G	x	С	G	х	1
Hydrofluosilicic Acid-10 -50%	х	G	х	х	G	х	С	Maxmul			Е		E		
Hydrogen Chloride (Dry Gas)	x	G	G	С	С	х	A	MBK (Methyl Butyl Ketone)	Е	Е	E	Е	E		1
Hydrogen Fluoride		5	E	E	E	Â		Mecurious Nitrate Solution	X	-	E	E	E		1
	-	_				~				-					1
Hydrogen Gas	E	E	С	E	E	х	A	MEK (Ethyl Methyl Ketone)	E	E	E	E	E		1
Hydrogen Peroxide - 50%	С	Х	Х	С	С	Х	Α	Mercuric Chloride	х	х	х	х	С	х	
Hydrogen Peroxide (35% or less)	E	х	Х	G	E			Mercuric Cyanide	Х	Х	Х	G	G	Х	
Hydrogen Peroxide (50% or less)	E	Х	Х	G	E			Mercury	х	х	G	E	E	А	
Hydrogen Peroxide (70% or less)	Е	х	х	G	E			Mesityl Oxide	E	Е	E	E	E		
Hydrogen Peroxide (90% or less)	Е	х	x	G	Е			Metallic Soaps	Е	Е	Е	Е	Е		
Hydrogen Sulfide	с	С	С	х	G	х	А	Methane	Е	Е	G	E	Е	А	
	Ŭ	Ŭ	Ŭ	E	E	~	~		G	G	G	G	G		
Hydroquinine								Methanol	G	G				A	
Hydroquinine Solution				E	E			Methoxychlor Solution			E	E	E		
Hypo Chlorous Acid	Х	Х	Х	Х	Х	Х	Х	Methyamine			E	E	E		
Ink (Printers)		G	G	G	E			Methyl Acetate	E	E	E	E	E		
Ink Oil		E	E	E	E			Methyl Acrylate	E	Е	E	E	E		
Insulating Oil		Е	Е	Е	E			Methyl Alcohol	E	G	Е	Е	Е		
lodine	Е	х	x	х	х	х	А	Methyl Bromide	х	с	G	G	G	х	3
Iron Acetate Liquor			Е	Е	Е		E	Methyl Butyl Ketone	Е	E	E	E	E		
	Y	X		E	E		E			-	E		E		
Iron Sulfate Solution	X	Х	X				E	Methyl Cyanide				E			
Isobutanol	E	G	E	E	E			Methyl Ethyl Ketone	G	G	G	G	G	A	3
Isobutyl Alcohol	E	G	E	E	E			Methyl Formate	E	Е	E	E	E		
Isocyanate			E	E	E			Methyl Isobutyl Ketone	G	G	G	G	G	Α	3
Isooctane	G	E	E	E	E			Methyl Metha crylate	G	С	х	G	G	х	,
Isoproponal	Е	G	Е	Е	Е		Е	Methyl Nutanathiol				Е	Е		
Isopropyl Acetate	Е	Е	Е	E	E			Methyl Phenol	Е		G	Е	Е		(
Isopropyl Alcohol	E	G	Е	E	E		E	Methyl Salicylate	E	Е	E	E	E		
	C								C	G	G			А	Ι.
Isopropyl Ether	-	G	<u> </u>	E	G	А	X	Methylene Chloride			_	С	С	А	
Isopropyltoluene	E	E	E	E	E			Methylene Dichloride	Х	E	E	E	E		1
Jet Fuel (JP4, JP5)	G	E	G	G	G	Х	Х	Milk	E	Х	G	E	E	A	
Karo Syrup	1			E	E			Mineral oil	G	Е	G	E	G	Α	1
Kerosene	G	G	G	G	G	х	х	Mobile Therm 603	E	Е	Е	E	E		1
Ketchup				E	Е			Molasses	G	х	G	Е	Е		1
Ketones	G	G	G	G	G	А	x	Monochloroacetic Acid Solution	1	G	х	x	x		1
Lacquer - Alcohol or Acetate as Solvent	E	E	x	x	E			Monochlorobenzene	1	E	E	E	E		1
•															1
Lacquer - Toluene or Xylene as Solvent	E	E	X	X	E			Monoethanolamine	1	E	E	E	E		1
Lactic Acid (25%)	F	G	Х	С	С	A	A	Monomethylamine	1		E	E	E		1
Lactic Acid (80%)	G	G	Х	С	С	Α	Α	Monosodium Phosphate	х	х	Е	E	E		1
Lactol		Е	Е	E	E			Motor Oil	E	Е	E	E	E		1
Lard Oil	G	С	F	G	G	А	А	Mould Oil	1		Е	E	E		1
Lasso	1			E	Е			Mouth Wash	Е	Е	Е	Е	Е		1
Latex Paint	Е	Е	Е	E	E			Muriatic Acid	x	С	С	x	x	х	
						v	^	Mustard		Ŭ			E	Â	1 '
Lead Acetate	x	X	X	G	G	X	A		1	_	X	E			1
Lead Chloride	х	С	С	G	G	х	С	Naptha		E	G	E	E		
Lead Nitrate Solution	1		Е	E	E			Napthalene	G	G	G	E	E	Α	
Lead Sulfate	х	С	Х	G	G	Х	С	Napthalene	G	G	G	G	G	А	
Lecithin				E	E			Neutral Oil		Е	Е	E	E		1
Ligroin	1		G	Е	Е			Nickel Acetate	Е	Е	Е	Е	E		1
Lime	1			1	G			Nickel Chloride	х	х	х	С	С	х	
				1								-			1 1

METAL: E - Excellent • G - Good • F - Fair • X - Not Recommended • C - Contact Factory NON-METAL: A - Acceptable • X - Not Recommended • C - Contact Factory

COUPLING MATERIAL CORROSION RESISTANCE

Ratings given are based at +70°F (+21°C).

MATERIAL	Aluminum	Brass	Carbon Steel	Stainless Steel, 304	Stainless Steel, 316	Nylon	Poly- Propylene	MATERIAL	Aluminum	Brass	Carbon Steel	Stainless Steel, 304	Stainless Steel, 316	Nylon	Poly- Propulana
Nickel Plating Solution			ateer	E	E		rropylene	Potash		х	G	E	E		Propylene E
Nickel Sulfate	х	х	С	G	G	х	А	Potassium Acetate	x	x	G	C	C	А	Ā
Nicotine Salts	~	~	E	x	G	~	~	Potassium Bicarbonate (30%)	x	G	G	E	E	A	A
Niter Cake	х	х	X	E	E			Potassium Carbonate (50%)	X	G	G	E	E	Â	A
	E	E	E	E	E			Potassium Chlorate (30%)	G	x	G	G	E	x	A
Nitogen, Liquid	E	X	×	G	C	х	x		X	×	G	C	C	Â	A
Nitric Acid (100%)								Potassium Chloride (30%)							
Nitric Acid (30%)	X	X	X	E	С	X	X	Potassium Chromate (30%)	G	G	С	G	G	Х	A
Nitric Acid (50%)	x	х	Х	G	С	х	Х	Potassium Cyanide (30%)	×	Х	G	G	G	X	A
Nitrobenzene	E	G	G	G	G	Α	A	Potassium Dichromate (30%)	E	G	G	E	E	Х	A
Nitroethane		Е		E	E			Potassium Hydroxide (90%)	х	х	С	х	С	Х	A
Nitrogen Gas	E	E	E	E	E			Potassium Nitrate (80%)	E	G	G	G	G	х	A
Nitrogen Oxide		Х	Е	E	E			Potassium Permanganate (20%)	G	G	G	G	G	Х	Α
Nitromethane		Е		E	E			Potassium Sulfate (10%)	E	G	G	E	E	A	A
Nitropropane		Е		E	E			Propane	E	E	G	G	G	Х	Х
Nitrosyl Chloride				E	E			Propionic Acid			Е	E			
Nitrous Acid (Up to 10%)	х	х	х	E	E			Propylene Glycol	G	G	G	G	G	Α	Α
Nitrous Oxide		Х	E	E	E			Propylene Oxide (90%)	С	С	С	E	E	х	х
Octadecanoic Acid	х	х	х	G	E			Purina insecticide	E	G	E	E	E		
Octanol	E	G	Е	E	Е			Puropale RX Oils	Е	Е	Е	E	E		
Octyl Alcohol	Е	G	Е	Е	Е			Pydraul 10E, 29E-LT, 30E, 60, 65E, 115SE	Е	Е	Е	Е	Е		
Oil - Castor	G	G	G	G	G	А	А	Pyrene	х	G	х	G	G	А	х
Oil - Coconut	G	С	F	G	G	А	А	Pyridine	G	G	G	G	G		х
Oil - Corn	G	G	G	C	G	A	A	Pyrogallic Acid	G	G	G	G	G	х	x
Oil - Cotton Seed	G	G	G	G	G	A	A	Pyroguard 160, 230, 630	-	-	E	E	E		
Oil - Fuel	G	G	G	G	G	A	x	Pyroguard 51, 53, 55	1		E	E	E		
Oil - Linseed	G	G	G	G	G	A	A	Pyroguard C, D	Е	Е	E	E	E		
Oil - Mineral	G	E	G	E	G	A		Quenching Oil		-	L .	E	E		
				-			A	5	E	-	-	E	E		
Oil - Silicon	G	E	G	G	G	A	A	Quintolubric 822	E	E	E				
Oil - Vegetable	G	G	G	E	E	A	X	Ramrod (Ag Spray)	E	E	E	E	E		
Oils, Animal	E	E	E	E	E			Rando Oils	E	E	E	E	E		
Oleic Acid	G	F	G	С	E	A	Х	Rapeseed Oil	E	E	E	E	E		
Oleum	G	Х	G	G	G	Х	х	Red Oil (MIL-5606)	E	G	G	G	E		E
Olive Oil	E	G	G	E	E		E	Refined Wax (Petroleum)		E	E	E	E		
Ortho-Dichlorobenzene		Е		E	E			Regal Oils R&O	E	E	E	E	E		
Oxalic Acid	G	С	Х	Х	Х	Х	Α	Salicyclic Acid	G			E	E		
Oxygen	G	G	G	G	G	Х	х	Salt Water		G	G	E	E		
Ozone	E	Е	E	E	E		E	Sewage	G	Е	Х	E	E		
Paint (inorganic)	E	Е		E	E			Silicone Greases		E	E	E	E		
Palm Oil	E	Е	E	E	E			Silicone Oils		Е	Е	E	E		
Palmitic Acid	G	F	F	G	G	Х	А	Silver Nitrate	х	х	Х	G	E	х	Α
Paraffin	G	G	G	G	G	А	А	Skydrol 500A & 7000	Е		Е	E	E		
Paraformaldehyde	Е			Е	Е			Soap Solutions	G	G	G	G	G	А	А
Peanut Oil	Е	Е	Е	Е	E		E	Soda Ash	х	G	Е	E	Е		Е
Pentasol	Е	Е	Е	E	Е			Sodium Acetate	Е	G	х	G	G	А	А
Perchloric Acid			F	G	E		E	Sodium Bicarbonate - 20%	G	G	F	E	E	А	А
Perchloroethylene	G	G	G	С	С	х	x	Sodium Bisulfate	x	С	G	С	С	A	A
Petrolatum	G	c	F	G	G	A	C	Sodium Bisulfite	x	G	x	С	c	A	A
Petroleum Ether	Ŭ	E	G	E	E		Ŭ	Sodium Bisaine Sodium Borate	G	G	F	G	G	A	A
Phenol (Carbonic Acid)	Е	E	F	C	E	х	x	Sodium Carbonate	x	G	G	С	G	A	A
Phenol (Carbonic Acid) Phenyl Chloride	E	E	E	E	E	^	x	Sodium Carbonate	G	G	X	G	G	X	A
-	C.						^							^	~
Phorone	v	E	E	E	E	v		Sodium Chloride	x	X	G	G	E		
Phosphoric Acid (25-50%)	X	X	X	С	С	X	A	Sodium Chromate	×	X	G	E	E		
Phosphoric Acid (50-85%)	X	X	X	C	C	X	A	Sodium Cyanide	x	X	G	С	С	A	A
Photographic Solutions	С	С	Х	E	E	Х	х	Sodium Dichromate	G	X	G	G	G	Х	A
Phthalic Anhydride	С	G	G	E	E	Х	Х	Sodium Fluoride (70%)	1				G		
Picric Acid	E	х	х	G	G	х	С	Sodium Hydrochloride - 30%	х	G	G	С	С	Х	А
Plating Solutions - Brass	С	С	С	С	G	Х	А	Sodium Hydroxide - 30%	х	G	G	E	E	х	Α
Plating Solutions - Cadmium	С	G	С	С	G	х	А	Sodium Hydroxide - 50%	х	х	F	E	С	Х	Α
Plating Solutions - Chrome (40%)	Х	С	Х	G	G	Х	А	Sodium Hydroxide - 70%	х	х	F	G	G	х	Α
Plating Solutions - Copper Cyanide	С	С	С	С	С	х	А	Sodium Hydroxide (40%)	х	x	G	Е	E		
Plating Solutions - Gold	С	С	С	С	Е	х	А	Sodium Hypochlorite	х	х	х	С	С	х	А
Plating Solutions - Iron	С	С	С	С	С	х	А	Sodium Metaphosphate	х	x	х	G	G	х	x
Plating Solutions - Lead	С	С	С	E	E	х	А	Sodium Nitrate - 40%	Е	G	G	E	E	А	А
Plating Solutions - Nickel	С	С	С	E	E	х	A	Sodium Perborate - 10%	G	x	G	G	G	x	A
Plating Solutions - Silver	C	C	C	E	E	X	A	Sodium Perborate - 10%	G	x	G	G	G	x	A
	-				F					$\hat{\mathbf{v}}$					
Plating Solutions - Tin	C	С	С	С		Х	A	Sodium Peroxide - 10%	G	X	G	G	G	Х	A
Plating Solutions - Zinc	С	С	С	С	С	Х	A	Sodium Phosphate Not Recommended	Х	Х	I	E	E		

METAL: E - Excellent • G - Good • F - Fair • X - Not Recommended • C - Contact Factory NON-METAL: A - Acceptable • X - Not Recommended • C - Contact Factory

186

COUPLING MATERIAL CORROSION RESISTANCE

Ratings given are based at +70°F (+21°C).

MATERIAL	Aluminum	Brass	Carbon Steel	Stainless Steel, 304	Stainless Steel, 316	Nylon	Poly- Propylene
Sodium Silicate	Е	G	G	G G	G G	А	А
Sodium Sulfate	С	G	G	С	E	А	А
Sodium Sulfide - 50%	х	х	G	С	G	х	А
Sodium Thiosulphate	G	х	х	G	G	А	А
Solnus Oils	Е	Е	Е	Е	Е		
Soybean Oil			Е	E	E		
Spent Acid				E	E		
Stannic Chloride	х	х	х	х	х	х	A
Stannous Chloride	х	х	Х	Х	С	х	х
Starch Gum	_	-	-	E	E		E
Stauffer Jet 1 Stauffer Jet 2	E	E	E	E	E		
Steam	C	C	C	C	C	х	с
Stearic Acid	G	F	F	G	E	A	A
Stoddard's Solvent	G	G	G	G	G	x	A
STPP (Sodium Tripolyphosphate)	х	х		E	E		
Styrene	х	G	G	х	G		
Sucrose Solutions			Е	E	Е		
Sugar Liquors (Beet)	E	G	G	E	Е	А	А
Sugar Liquors (Cane)	Е	G	G	G	G	Α	А
Sulfate Liquors	G	Х	F	С	G	Х	А
Sulfite Liquors	Х	х	х	G	G	х	х
Sulfur Chloride	х	С	X	С	С	X	x
Sulfur Dioxide (Dry)	G	G	E	С	G	X	A
Sulfur Trioxide Sulfuric Acid - 100%	G X	G X	G G	C C	G C	× x	X X
Sulfuric Acid to 10%	x	G	x	×	x	×	A
Sulfurous Acid	G	G	x	x	c	x	A
Sun R&O Oils	E	-	E	E	E		
Suntac HP Oils	Е		Е	Е	Е		
Suntac WR Oils	Е		Е		Е		
Sunvis Oils 700, 800, 900			Е	E	Е		
Synthetic Oil (Citgo)			E	E	E		
Syrup			Е	E	E		
Tall Oil				Х	G		
Tall Oil under 150°F				х	G		
Tallow	E	G	G	G	G		
Tannic Acid	X	C	X	G	G	X	A
Tanning Liiquors Tar Under 100°F	E	C G	C	E	E	Х	A
Tartaric Acid	C	C	C	E	E	А	А
Tellus Oils	E	E	E	E	E	~	~
Tenol Oils	-	-	E	E	E		
Tergitol		G	G	Е	Е		
Tetrahydrofuran	х	С	Е	1	G	А	x
Tetrahydrofuran (THF)			G				х
Theobromo Oil			Е	Е	Е		
Titanium Tetrachloride	х	х	G	С	G	х	х
Toluene	E	Е	E	E	E	Α	х
Toluene Diisocyanate			E	E	E		
Tomato Juice	G	С	F	G	G	Х	A
Transformer Oil (Askarel Types)	_	E	E	E	E		G
Transformer Oil (Petroleum Types) Transmission Fluid	E	E	E	E	E		
Tributoxyethyl Phosphate	х	E	E	E	E		
Tributyl Phosphate	x		E				
Trichloroethylene	E	С	G	С	С	А	x
Trichloroethylene	X	E	x	~	E		
Tricresyl Phosphate	x		E		G		
Triethanolamine	G	х	G	G	G	А	х
Triethylamine	С	С	С	G	G	А	х
Trihydroxybenzoic Acid			х	Е	Е		Е
Trinitriphenol	Х	Х	Х	E	E		
Trisodium Phosphate	Х	G	G	E	Е	Α	A
Tung Oil	E	E	E	E	E		
Turpentine	G	Х	G	E	E	Х	Х

MATERIAL	Aluminum	Brass	Carbon Steel	Stainless Steel, 304	Stainless Steel, 316	Nylon	Poly- Propylene
Ucon Hydrolube Types 150CP, 200CP	E	Е	Е	Е	E		
Ucon M1	E	Е	Е	Е	Е		
Union Hydraulic Tractor Fluid	E	Е	E	E	E		
Urea - 50%	G	С	G	G	G	Α	А
Urine	С	С	G	E	E	х	А
Varnish		G	G	E	E		
Vegetable Oils	E		E	E	E		
Versilube F-50, F-44	E	Е	Е	E	E		
Vinegar	G	х	G	G	G	х	А
Vinyl Acetate	E	G		E	G		
Vinyl Chloride	E	х	G	E	E		
Vitrea Oils			Е	E	E		
VM&P Naptha	G	Е	E	E	E		
Water (Distilled)	х	G	х	G	G	Α	А
Water (Sea)	G	G	Х	G	G	Α	Α
Water Acid (Mine)	х	х	х	С	С	х	А
Whiskey	х	G	G	E	E	x	Α
White Liquor	G	С	х	G	G	х	А
Wine	х	G	Х	E	E	x	Α
Xylene	G	G	G	G	G	Α	х
Zeric				E	E		
Zinc Chloride	х	х	х	х	G	А	А
Zinc Nitrate	С	С	С	G	G	x	А
Zinc Sulfate - 50%	х	G	х	E	Е	х	А

	DE		L AND	MILLI	METER	E(QUIVAL	.ENTS	of fr	ACTIO	NS	
	1 inc	h = 25.4	4 millim	eters				1 inc	h = 25.4	4 millim	eters	
	Fractio	nal Inch		Dec	imal		Fractional Inch Decir					imal
1/64	1/32	1/16	1/8	inch	mm		1/64	1/32	1/16	1/8	inch	mm
1				0.016	0.40		33				0.516	13.10
2	1			0.031	0.79		34	17			0.531	13.50
3				0.047	1.19		35				0.547	13.90
4	2	1		0.063	1.59		36	18	9		0.563	14.30
5				0.078	1.98		37				0.578	14.70
6	3			0.094	2.38		38	19			0.594	15.10
7				0.109	2.78		39				0.609	15.50
8	4	2	1	0.125	3.18		40	20	10	5	0.625	15.90
9				0.141	3.57		41				0.641	16.30
10	5			0.156	4.00	S	42	21			0.656	16.70
11				0.172	4.40	Ë	43				0.672	17.10
12	6	3		0.188	4.80	Ξ	44	22	11		0.688	17.50
13				0.203	5.20		45				0.703	17.90
14	7			0.219	5.60	11	46	23			0.719	18.30
15				0.234	6.00	4 N	47				0.734	18.70
16	8	4	2	0.250	6.40	INCH = 25.4 MILLIMETERS	48	24	12	6	0.750	19.10
17				0.266	6.70	Ш	49				0.766	19.50
18	9			0.281	7.10	Ы	50	25			0.781	19.80
19				0.297	7.50	N	51				0.797	20.30
20	10	5		0.313	7.90		52	26	13		0.813	20.60
21				0.328	8.30		53				0.828	21.00
22	11			0.344	8.70		54	27			0.844	21.40
23				0.359	9.10		55				0.859	21.80
24	12	6	3	0.375	9.50		56	28	14	7	0.875	22.20
25				0.391	9.90		57				0.891	22.60
26	13			0.406	10.30		58	29			0.906	23.00
27				0.422	10.70		59				0.922	23.40
28	14	7		0.438	11.10		60	30	15		0.938	23.80
29				0.453	11.50		61				0.953	24.20
30	15			0.469	11.90		62	31			0.969	24.60
31				0.484	12.30		63				0.984	25.00
32	16	8	4	0.500	12.70		64	32	16	8	1.000	25.40

	Vacuum Conversion Table For Water (Suction)											
ATM	PSI	Meter(s)	Feet	mm	In Hg	%						
0.1	1.40	1	3 ft. 3-3/8 in.	73.60	2.90	10						
0.2	2.80	2	6 ft. 6-3/4 in.	147.10	5.80	20						
0.3	4.20	3	9 ft. 10-1/8 in.	220.70	8.70	30						
0.4	5.70	4	13 ft. 1-1/2 in.	294.20	11.60	40						
0.5	7.10	5	16 ft. 4-13/16 in.	367.80	14.50	50						
0.6	8.50	6	19 ft. 8-3/16 in.	441.30	17.40	60						
0.7	10.00	7	22 ft. 11-9/16 in.	514.90	20.30	70						
0.8	11.40	8	26 ft. 2-15/16 in.	588.40	23.20	80						
0.9	12.80	9	29 ft. 6-3/8 in.	662.00	26.00	90						
1.0	14.20	10	32 ft. 9-11/16 in.	735.50	29.00	100						

TECHNICAL INFORMATION TEMPERATURE CONVERSION

Look up reading in middle column (shaded). If in degrees Centigrade, read Farenheit equivalent in right-hand column; if in Farenheit degrees, read Centigrade equivalent in left-hand column.

°F = (°C x 1.8) +32

°C = (°F - 32) x .5556

	С			С			С	
С	F	F	С	F	F	С	F	F
-51	-60	-76	.6	33	91.4	22.2	72	161.6
-46	-50	-58	1.1	34	93.2	22.8	73	163.4
-40	-40	-40	1.7	35	95.0	23.3	74	165.2
-34	-30	-22	2.2	36	96.8	23.9	75	167.0
-29	-20	-4	2.8	37	98.6	24.4	76	168.8
-23	-10	14	3.3	38	100.4	25.0	77	170.6
-17.8	0	32	3.9	39	102.2	25.6	78	172.4
-17.2	1	33.8	4.4	40	104.0	26.1	79	174.2
-16.7	2	35.6	5.0	41	105.8	26.7	80	176.0
-16.1	3	37.4	5.6	42	107.6	27.2	81	177.8
-15.6	4	39.2	6.1	43	109.4	27.8	82	179.6
-15.0	5	41.0	6.7	44	111.2	28.3	83	181.4
-14.4	6	42.8	7.2	45	113.0	28.9	84	183.2
-13.9	7	44.6	7.8	46	114.8	29.4	85	185.0
-13.3	8	46.4	8.3	47	116.6	30.0	86	186.8
-12.8	9	48.2	8.9	48	118.4	30.6	87	188.6
-12.2	10	50.0	9.4	49	120.2	31.1	88	190.4
-11.7	11	51.8	10.0	50	122.0	31.7	89	192.2
-11.1	12	53.6	10.6	51	123.8	32.2	90	194.0
-10.6	13	55.4	11.1	52	125.6	32.8	91	195.8
-10.0	14	57.2	11.7	53	127.4	33.3	92	197.6
-9.4	15	59.0	12.2	54	129.2	33.9	93	199.4
-8.9	16	60.8	12.8	55	131.0	34.4	94	201.2
-8.3	17	62.6	13.3	56	132.8	35.0	95	203.0
-7.8	18	64.4	13.9	57	134.6	35.6	96	204.8
-7.2	19	66.2	14.4	58	136.4	36.1	97	206.6
-6.7	20	68.0 60.0	15.0	59 60	138.2	36.7	98	208.4
-6.1	21	69.8	15.6	60 61	140.0	37.2	99	210.2
-5.6	22	71.6	16.1	61	141.8	37.8	100	212.0
-5.0	23	73.4 75.0	16.7	62 62	143.6			
-4.4	24	75.2	17.2	63 64	145.4	40	440	000
-3.9	25	77.0	17.8	64 65	147.2	43	110	230
-3.3	26 27	78.8	18.3	65 66	149.0	49 54	120	248
-2.8 -2.2	27 28	80.6 82.4	18.9 19.4	66 67	150.8 152.6	54 60	130 140	266 284
-2.2 -1.7	20 29	84.2	19.4 20.0	67 68	152.6	60 66	140	302
-1.7	29 30	86.0	20.0 20.6	68 69	154.4 156.2	00 71	160	302
-0.6	30 31	80.0 87.7	20.8	70	156.2	77	170	338
-0.0	31	89.6	21.1	70	158.0	82	180	356
v	02	0.00	£ 1.7		100.0	02	100	

TECHNICAL INFORMATION CONVERSION FACTORS

TO CONVERT		MULTIPLY BY	TO CONVERT	ΙΝΤΟ	MULTIPLY BY
ATMOSPHERES	cms of mercury	76	CUBIC FT/MIN	cu cms/sec	472
atmospheres	ft. of water (at 4°C)	33.9	cu ft/min	gals/sec	0.1247
atmospheres	in. of mercury (at 0°C)	29.92	cu ft/min	liters/sec	0.472
atmospheres	kgs/sq cm	1.0333	cu ft/min	lbs water/min	62.43
atmospheres	kgs/sq meter	10.332	cu ft/sec	gals/min	448.831
atmospheres	pounds/sq in	14.7	CUBIC INCHES	cc	16.39
BAR	newtons/sq m	105	cu ins	cu ft	5.787 x 10 ⁻⁴
bar	atmospheres	0.9869	cu ins	cu meters	1.639 x 10 ⁵
bar	at (tech.)	1.0197	cu ins	cu yards	2.143 x 10⁻⁵
bar	psi	14.504	cu ins	gals	4.329 x 10 ⁻³
BARRELS - OIL	gals/oil	42	cu ins	liters	1.639 x 10 ⁻²
BT UNITS	kg-calories	0.252	cu ins	pints (liq)	0.03463
BTUs	ftlbs	777.9	cu ins	quarts (liq)	0.01732
BTUs	hp-hrs	3.927 x 10 ⁻⁴		CC	104
BTUs	kg-meters	107.5	cu M	cu ft	35.31
BTUs	kw-hrs	2.928 x 10 ⁻⁴	cu M	cu meters	61.023
CENTIMETERS	inches	0.3937	cu M	cu yards	1.308
cm	meters	0.01	cu M	-	264.2
cm	mm	10		gals	103
	atm	0.3937	cu M	liters	
	ft water	0.3937	cu M	pints (liq)	2113
cms mercury		136		quarts (liq)	1057
cms mercury	kgs/sq meter	27.85		cu cms	7.646 x 10 ⁵
cms mercury	lbs/sq ft		cu yds	cu ft	27
cms mercury	lbs/sq in	0.1934	cu yds	u ins	46,656
CMS/SECOND	ft/min	1.969	cu yds	cu meters	0.7645
cms/sec	ft/sec	0.03281	cu yds	gals	202
cms/sec	km/hr	0.036	DECIMETERS	meters	0.1
cms/sec	meter/min	0.6	DEGREES (ANGLE)	minutes	60
cms/sec	miles/min	3.728 x 10 ⁻⁴	degs (angle)	radians	0.01745
CMS/SEC/SEC	ft/sec/sec	0.03281	degs (angle)	secs	3600
CUBIC CMS	cu/ft	3.531 x 10⁻⁵	DEGREES/SEC	radians/sec	0.01745
cu cms	cu in	3.102 x 10 ⁻²	degs/sec	revs/min	0.1667
cu cms	cu meters	10 ⁶	degs/sec	revs/sec	0.002778
cu cms	cu yards	1.308 x 10 ⁻⁶	FEET	cms	30.48
cu cms	gals	2.642 x 10 ⁻⁴	ft	ins	12
cu cms	liters	10 ⁻³	ft	meters	0.3048
cu cms	pints (liq)	2.113 x 10 ⁻³	ft	yds	1/3
cu cms	quarts (liq)	1.057 x 10 ⁻³	FEET OF WATER	atms	0.0285
CUBIC FEET	cubic cms	2.832 x 10 ⁻⁴	ft of w	ins mercury	0.8826
cu ft	cu inches	1728	ft of w	kgs/sq cm	0.03048
cu ft	cu meters	0.02832	ft of w	lbs/sq ft	62.32
cu ft	cu yards	0.03704	ft of w	lbs/sq in	0.4328
cu ft	gals	7.48052	FEET/MIN	cm/sec	0.508
cu ft	liters	28.32	ft/min	ft/sec	0.01667
cu ft	pints (liq)	59.48	ft/min	kms/hr	0.01829
cu ft	quarts (liq)	29.32	ft/min	meters/min	0.3048
			ft/min	miles/hr	0.01136

TECHNICAL INFORMATION CONVERSION FACTORS

TO CONVERT	INTO	MULTIPLY BY	TO CONVERT	INTO	MULTIPLY BY
FT/SEC/SEC	cms/sec/sec	30.48	INS OF WATER	atms	0.002458
ft/sec/sec	meters/sec/sec	0.3048	ins of w	ft-water	0.07355
FT - POUNDS	BTUs	1.286 x 10-3	ins of w	kgs/sq cm	0.00254
ft lbs	hp/hrs	5.050 x 10-7	ins of w	lbs/sq ft	5.202
ft lbs	kg-calories	3.241 x 10-4	ins of w	lbs/sq in	0.03613
ft lbs	kg-meters	0.1383	KILOGRAMS	dynes	980,665
ft lbs	kw-hrs	3.766 x 10-7	kgs	lbs	2.205
FT - LBS/MIN	BTUs/min	7.717 x 10-2	kgs	ton (short)	1.102 x 10-3
ft - Ibs/min	ftlbs/sec	0.01667	kgs	grams	1000
ft - Ibs/min	hp	3.030 x 10-5	KGS/SQ CM	atms	0.9678
ft - Ibs/min	kg-calories/min	3.241 x 10-3	kgs/sq cm	ft-water	32.81
ft - Ibs/min	kws	2.260 x 10-5	kgs/sq cm	ins mercury	28.96
FT - LBS/SEC	BTUs/min	7.717 x 10-2	kgs/sq cm	lbs/sq ft	2048
ft - Ibs/sec	hp	1.818 x 10-3	kgs/sq cm	lbs/sq in	14.22
ft - Ibs/sec	kg-calories/min	1.945 x 10-2	KILOMETERS	cms	105
ft - Ibs/sec	kws	1.356 x 10-3	kms	ft	3281
GALLONS	ccs	3785	kms	meters	103
gals	cu ft	0.1337	kms	miles	0.6214
gals	cu ins	231	KMS/HR	cms/	27.78
gals	cu meters	3.785 x 10-3	kms/hr	ft/min	54.68
gals	liters	3.785	kms/hr	ft/sec	0.9113
gals	pints (liq)	8	kms/hr	meters/min	16.87
gals	quarts (liq)	4	kms/hr	miles/hr	0.6214
GALLONS, IMP	US gals	1.20095	KMS/HR/SEC	cms/sec/sec	27.78
gallons, US	Imp gals	0.83267	kms/hr/sec	ft/sec/sec	0.9113
GALLONS/MIN	cu ft/sec	2.225 x 10-3	kms/hr/sec	meters/sec/sec	0.2778
gals/min	liters/sec	0.06308	KILOWATTS	BTUs/min	56.92
gals/min	cu ft/hr	8.0208	kws	ft-lbs/min	4.425 x 104
HORSEPOWER	BTUs/min	42.44	kws	ft-lbs/sec	737.6
Нр	ft-lbs/min	33,000	kws	hp	1.341
hp	ft-lbs/sec	550	kws	kg-calories/min	14.34
hp	hp (metric)	1.104	kws	watts	103
hp	kg-calories/min	10.7	KILOWATTS -	BTUs	3415
hp	kws	0.7457	HOURS	5103	
hp	watts	745.7	kw-hrs	ft-lbs	2.655 x 106
HP - HOURS	BTUs	2547	kw-hrs	hp-hours	1.341
hp-hrs	ft-lbs	1.98 x 108	kw-hrs	kg-calories	860.5
hp-hrs	kg-calories	641.7	kw-hrs	kw-meters	3.671 x 105
hp-hrs	kg-meters	2.737 x 105	LITERS	CCS	103
hp-hrs	kw-hrs	0.7457	liters	cu ft	0.03531
INCHES	cms	2.54	liters	cu ins	51.02
INS MERCURY	atms	0.002458	liters	cu meters	2-Oct
ins mercury	ft-water	1.133	liters	gals	0.2642
ins mercury	kgs/sq cm	0.03453	liters	quarts (liq)	1.057
ins mercury	lbs/sq ft	70.73	LITERS/MIN	gals/sec	4.403 x 10-3
ins mercury	lbs/sq in	0.4912			

TECHNICAL INFORMATION CONVERSION FACTORS

TO CONVERT	INTO	MULTIPLY BY
METERS	cms	100
meters	ft.	3.281
meters	ins	39.37
meters	kms	103
meters	mms	103
meters/min	cms/sec	1.667
meters/min	ft./min	3.281
meters/min	ft/sec	0.05468
meters/min	kms/hr	0.06
meters/min	miles/hr	0.03728
METERS/SEC	ft/min	196.8
meters/sec	ft/sec	3281
meters/sec	kms/hr	3.6
meters/sec	kms/min	0.06
meters/sec	miles/hr	2.237
meters/sec	miles/min	0.03728
MICRON	meters	10-8
microns	in	39 x 10-6
MILES/HR	cms/sec	44.70
miles/hr	ft./min	88
miles/hr	ft/sec	1.467
miles/hr	kms/hr	1.609
miles/hr	meters/min	26.82
MILLIMETERS	cms	0.1
mms	ins	0.0397
MINUTES (ANGLE)	radians	2.909 x 10-4
NEWTON	kgs	0.1020
OUNCES	lbs	1.805
ozs	gram	28.349527
OUNCES (FLUID)	cu in	1.805
ozs (fluid)	liters	0.02957
POUNDS	ozs	16
lbs	tons (short)	0.005
lbs	newtons (N)	4.44
lbs	gram	453.5924
LBS OF WATER	cu ft	0.01605
lbs of water	cu in	27.73
lbs of water	gals	0.1204
LBS OF WATER/ MIN	cu ft/sec	2.679 x 10-4
POUNDS/CU FT	lbs/cu in	5.787 x 10-4
POUNDS/CU IN	lbs/cu ft	1728
POUNDS/SQ IN	atms	0.06804
lbs/sq in	ft water	2.311
lbs/sq in	in mercury	2.036
lbs/sq in	kgs/sq cm	0.07031

TO CONVERT	ΙΝΤΟ	MULTIPLY BY
RADIANS	degrees	57.29578
TONS (LONG)	kgs	1016
tons (long)	lbs	2240
tons (long)	tons (short)	1.12000
TONS (SHORT)	kgs	2000
tons (short)	kps	907.18486
tons (short)	tons (long)	0.89287
tons (short)tons (metric)	0.90718
WATTS	BTUs/min	0.05682
watts	ft-lbs/min	44.26
watts	ft-lbs/sec	0.7376
watts	hp	1.341 x 10-3
watts	kg-calories/min	0.01434
watts	kws	10
WATTS/HOURS	BTUs	3.415
watts/hours	ft-lbs	2655
watts/hours	hp-hrs	1.341 x 10-3
watts/hours	kg/calories	0.8605
watts/hours	kg-meters	367.1
watts/hours	kw-hrs	10-3

WWW.JASONINDUSTRIAL.COM

ABLES WWW.JASONINDUSTRIAL.COM

TECHNICAL INFORMATION PRESSURE RATING CONVERSION

	PSI	to BAR - Co	onversion Ta	able	
PSI	BAR	PSI	BAR	PSI	BAR
1	0.07	30	2.07	210	14.48
2	0.14	35	2.41	220	15.17
3	0.21	40	2.76	230	15.86
4	0.28	45	3.10	240	16.55
5	0.34	50	3.45	250	17.24
6	0.41	55	3.79	275	18.96
7	0.48	60	4.14	300	20.68
8	0.55	65	4.48	325	22.41
9	0.62	70	4.83	350	24.13
10	0.69	75	5.17	375	25.86
11	0.76	80	5.52	400	27.58
12	0.83	85	5.86	425	29.30
13	0.90	90	6.21	450	31.03
14	0.97	95	6.55	475	32.75
15	1.03	100	6.89	500	34.47
16	1.10	110	7.58	550	37.92
17	1.17	120	8.27	600	41.37
18	1.24	130	8.96	650	44.82
19	1.31	140	9.65	700	48.26
20	1.38	150	10.34	750	51.71
21	1.45	160	11.03	800	55.16
22	1.52	170	11.72	850	58.61
23	1.59	180	12.41	900	62.05
24	1.66	190	13.10	950	65.50
25	1.72	200	13.79	1000	68.95

	BA	R to PSI Co	onversion Ta	ble	
BAR	PSI	BAR	PSI	BAR	PSI
1	14.50	30	435.10	210	3046.0
2	29.01	35	507.60	220	3191.0
3	43.51	40	580.20	230	3336.0
4	58.02	45	652.70	240	3481.0
5	72.52	50	725.20	250	3626.0
6	87.02	55	797.70	275	3989.0
7	101.50	60	870.20	300	4351.0
8	116.00	65	942.70	325	4714.0
9	130.50	70	1015.0	350	5076.0
10	145.00	75	1088.0	375	5439.0
11	159.50	80	1160.0	400	5802.0
12	174.00	85	1233.0	425	6164.0
13	188.50	90	1305.0	450	6527.0
14	203.10	95	1378.0	475	6889.0
15	217.60	100	1450.0	500	7252.0
16	232.10	110	1595.0	550	7977.0
17	246.60	120	1740.0	600	8702.0
18	261.10	130	1885.0	650	9427.0
19	275.60	140	2031.0	700	10153.0
20	290.10	150	2176.0	750	10878.0
21	304.60	160	2321.0	800	11603.0
22	319.10	170	2466.0	850	12328.0
23	333.60	180	2611.0	900	13053.0
24	348.10	190	2756.0	950	13779.0
25	362.60	200	2901.0	1000	14504.0

NOTES	WWW.JASONINDUSTRIAL.COM	MM	00

LET US BE YOUR COMPLETE HOSE SUPPLIER INCLUDING HYDRAULIC HOSE & COUPLINGS

Top Quality / 100% Compatibility / Competitive Price / Excellent Customer Service.

- A complete line of 100R1 through 100R19 rubber cover hydraulic hoses in stock.
- Full line of constant pressure (Isobaric) hoses
 - SAE 100R17 3,000 PSI
 - SAE 100R19 4,000 PSI
 - SAE 100R13 5,000 PSI
 - SAE 100R15 6,000 PSI
- The Dreamshield[®] Technology cover is available in many of these hoses, which offers between 6 to 8 times the abrasion resistance of standard rubber covers.
- Excellent length patterns (two piece max, many are single piece) reels up to 1". Single piece 150' coils on the spiral hoses.
- A complete line of bite the wire, one-piece couplings that are validated with these hoses.
- All crimped couplings are manufactured using formed high quality steel and with all inserts made from a single piece (no braze joints to leak or fail).
- All nuts are cold formed which virtually eliminates any chances of cracking of during tightening.
- A wide variety of popular metric connector ends are available directly from stock.
- Jason MyCrimp app is available for free download.
- All crimps are full length, which greatly simplifies crimper set up by not having to precisely locate the die footprint.
- A full line of Jason crimpers is available ranging from small to large, simple to very sophisticated production capabilities.
- Excellent customer service; easy to work with. B2B ordering is available (additional discount ordering this way).
- More than sufficient inventory on hand, quick turnaround of orders.

SEE OUR HYDRAULIC HOSE PRODUCT GUIDE ON WWW.JASONINDUSTRIAL.COM FOR MORE INFORMATION!

TERMS, CONDITIONS AND LIMITED WARRANTY OF SALE

All prices, terms and conditions of sale are subject to change without prior notice. Buyer agrees to all terms and conditions of seller upon the placement of any and all purchase orders.

GENERAL

- All orders are subject to a minimum charge of \$100.00.
- All claims must be made within seven (7) days of receipt of merchandise.
- The company reserves the right at all times to reject any and all orders for any reason.

PAYMENT TERMS

- Net 30 days (to approved and qualified accounts).
- We reserve the right to hold shipments against past due accounts.
- Seller may require full or partial payment in advance if, in its sole judgement, the financial condition of the buyer does not justify the terms specified.
- All past due accounts are subject to a late payment charge of 1.5% per month, or maximum allowed by law if different, along with the expenses incidental to collection including reasonable attorney's fees.
- Returned checks are subject to a minimum \$50.00 charge.

ACCEPTANCE, ALTERATION AND CANCELLATION OF ORDERS

Orders for other than standard items or standard lengths may not be cancelled after purchase has been committed, production scheduled or any costs incurred.

RETURN OF DEFECTIVE MERCHANDISE

Defective or failed material to be held at the buyer's premises until authorization has been granted by seller to return or dispose of merchandise. Merchandise to be returned for

final inspection must be returned Freight Prepaid in the most economical way. Credit will be issued for material found to be defective upon our inspection based on prices at time of purchase.

MERCHANDISE SHIPPED IN ERROR

Buyer must notify seller immediately on any merchandise shipped in error. Upon notification, merchandise is to be returned to seller either via truck on a Freight Collect basis, via carrier of our choice, or via UPS on a Freight Prepaid basis. Buyer will be reimbursed for cost of merchandise, plus any additional freight which may have been incurred due to shipping error.

MERCHANDISE ORDERED IN ERROR

Standard packaged merchandise only may be returned, provided that the merchandise is in the original buyer's possession not more than 30 days. If merchandise is accepted for return, merchandise must be returned Freight Prepaid, and buyer will be charged a minimum of 15% rehandling charge, plus a chargeback for outbound freight charges if the original order was shipped prepaid. Returns are not accepted for any merchandise that is specifically manufactured to meet the buyer's requirement of either specifications or large quantity.

DELIVERY, DAMAGES, SHORTAGES

Delivery to the initial common carrier shall constitute the delivery to the buyer. Our responsibility, insofar as transportation risks are concerned, ceases upon the delivery of the merchandise in good condition to such a carrier, and all the merchandise shall be shipped at the buyer's risk.

GOODS DAMAGED IN SHIPMENT

Upon receipt of shipment, any evidence of damage to original shipping package must be reported by the receiving party and a claim made with the delivering carrier upon receipt of shipment.

CONCEALED DAMAGE

Any evidence of damage to material shipped, upon the opening of the original shipping package, must be reported by the receiving party to and a claim made with the delivering carrier without delay.

LIMITED WARRANTY

The merchandise or products sold or distributed by AMMEGA US INC. are warranted to our customers to be free from defects in material and workmanship at the time of shipment by us. All warranty claims shall be made within 90 days after we have shipped the merchandise. Our liability hereunder is limited to the purchase price of any merchandise proved defective, or, at our option, to the replacement of such merchandise upon its authorized return to us.

THIS WARRANTY IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE CREATED UNDER APPLICABLE LAW INCLUDING, BUT NOT LIMITED TO, THE WARRANTY OF MERCHANT ABILITY AND THE WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL WE BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOSS OF PROFITS. Jason Industrial ia a member of the AMMEGA US INC.

Copyright Notice: AMMEGA US INC. copyright. All rights reserved. AMMEGA US INC. is and shall remain the owner of all right on drawings, technical specifications and any other information contained in the present catalog or otherwise communicated by AMMEGA US INC. to the customer. The customer shall not disclose such information to third parties or use such information for purposes different from the definition of the order to AMMEGA US INC., unless upon prior written authorization of AMMEGA US INC.

ARGENTINA

Buenos Aires Phone +54 11 4218 2906 Info.ar@megadynegroup.com

Córdoba Phone +54 0351 523 1666 Info.ar@megadynegroup.com

BRAZIL

Sorocaba Phone +55 15 2101 7700 Info.br@megadynegroup.com

CANADA

Edmonton Phone +1 780 461 4400 Info.ca@megadynegroup.com

Montreal Phone +1 514 31 2341 Info.ca@megadynegroup.com

Toronto Phone +1 905 602 4400 Info.ca@megadynegroup.com

CHILE Santiago Phone +56 2 2331 2900 Info.cl@megadynegroup.com

Puerto Montt Phone +56 65 227 4995 Info.cl@megadynegroup.com

COLOMBIA Bogotá Phone +57 (1) 390 4325 Info.co@megadynegroup.com

Cartagena Phone +57 (5) 693 2591 Info.co@megadynegroup.com

Mosquera, Cundinamarca Phone +57 (5) 893 9890 Info.co@megadynegroup.com

MÉXICO México C.P. Phone +52 55 5587 3680 info.mx@megadynegroup.com

PERÚ Lima Phone +51 713 0069 info.pe@megadynegroup.com

U.S.A California

Phone +1 323 265 8061 info.us@megadynegroup.com

Florida Phone +1 813 241 4111 info.us@megadynegroup.com

Georgia Phone +1 770 887 9725 info.us@megadynegroup.com

Illinois -Hose Distribution Center Phone +1 630 752 0600 info.us@megadynegroup.com 221 S. Westgate Dr. Carol Stream, IL 60188

New York Phone +1 716 667 7450 info.us@megadynegroup.com

North Carolina Phone +1 704 583 5388 info.us@megadynegroup.com

Oregon Phone +1 503 231 7224 info.us@megadynegroup.com

Texas Phone +1 972 438 6992 info.us@megadynegroup.com

HEADQUARTERS

New Jersey Phone +1 973 227 4904 info.us@megadynegroup.com 340 Kaplan Dr Fairfield, NJ 07004

www.jasonindustrial.com

Member of Ammega Group. ammega.com

©2024 Jason Industrial. All rights reserved.